Metamath Proof Explorer


Theorem uvtxssvtx

Description: The set of the universal vertices is a subset of the set of all vertices. (Contributed by AV, 23-Dec-2020)

Ref Expression
Hypothesis uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion uvtxssvtx ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉

Proof

Step Hyp Ref Expression
1 uvtxel.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 uvtxisvtx ( 𝑛 ∈ ( UnivVtx ‘ 𝐺 ) → 𝑛𝑉 )
3 2 ssriv ( UnivVtx ‘ 𝐺 ) ⊆ 𝑉