| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvtxnbgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							uvtxusgr.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								1
							 | 
							uvtxval | 
							⊢ ( UnivVtx ‘ 𝐺 )  =  { 𝑛  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) 𝑘  ∈  ( 𝐺  NeighbVtx  𝑛 ) }  | 
						
						
							| 4 | 
							
								2
							 | 
							nbusgreledg | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑘  ∈  ( 𝐺  NeighbVtx  𝑛 )  ↔  { 𝑘 ,  𝑛 }  ∈  𝐸 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							ralbidv | 
							⊢ ( 𝐺  ∈  USGraph  →  ( ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) 𝑘  ∈  ( 𝐺  NeighbVtx  𝑛 )  ↔  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) { 𝑘 ,  𝑛 }  ∈  𝐸 ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							rabbidv | 
							⊢ ( 𝐺  ∈  USGraph  →  { 𝑛  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) 𝑘  ∈  ( 𝐺  NeighbVtx  𝑛 ) }  =  { 𝑛  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) { 𝑘 ,  𝑛 }  ∈  𝐸 } )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqtrid | 
							⊢ ( 𝐺  ∈  USGraph  →  ( UnivVtx ‘ 𝐺 )  =  { 𝑛  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑛 } ) { 𝑘 ,  𝑛 }  ∈  𝐸 } )  |