| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							uvtxnbgr.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							uvtxusgr.e | 
							⊢ 𝐸  =  ( Edg ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								1 2
							 | 
							uvtxusgr | 
							⊢ ( 𝐺  ∈  USGraph  →  ( UnivVtx ‘ 𝐺 )  =  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 } )  | 
						
						
							| 4 | 
							
								3
							 | 
							eleq2d | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  𝑁  ∈  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 } ) )  | 
						
						
							| 5 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑣  =  𝑁  →  { 𝑣 }  =  { 𝑁 } )  | 
						
						
							| 6 | 
							
								5
							 | 
							difeq2d | 
							⊢ ( 𝑣  =  𝑁  →  ( 𝑉  ∖  { 𝑣 } )  =  ( 𝑉  ∖  { 𝑁 } ) )  | 
						
						
							| 7 | 
							
								
							 | 
							preq2 | 
							⊢ ( 𝑣  =  𝑁  →  { 𝑘 ,  𝑣 }  =  { 𝑘 ,  𝑁 } )  | 
						
						
							| 8 | 
							
								7
							 | 
							eleq1d | 
							⊢ ( 𝑣  =  𝑁  →  ( { 𝑘 ,  𝑣 }  ∈  𝐸  ↔  { 𝑘 ,  𝑁 }  ∈  𝐸 ) )  | 
						
						
							| 9 | 
							
								6 8
							 | 
							raleqbidv | 
							⊢ ( 𝑣  =  𝑁  →  ( ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸  ↔  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							elrab | 
							⊢ ( 𝑁  ∈  { 𝑣  ∈  𝑉  ∣  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑘 ,  𝑣 }  ∈  𝐸 }  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							bitrdi | 
							⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑁  ∈  𝑉  ∧  ∀ 𝑘  ∈  ( 𝑉  ∖  { 𝑁 } ) { 𝑘 ,  𝑁 }  ∈  𝐸 ) ) )  |