Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxnbgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
uvtxusgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
uvtxusgr |
⊢ ( 𝐺 ∈ USGraph → ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑘 , 𝑣 } ∈ 𝐸 } ) |
4 |
3
|
eleq2d |
⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ 𝑁 ∈ { 𝑣 ∈ 𝑉 ∣ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑘 , 𝑣 } ∈ 𝐸 } ) ) |
5 |
|
sneq |
⊢ ( 𝑣 = 𝑁 → { 𝑣 } = { 𝑁 } ) |
6 |
5
|
difeq2d |
⊢ ( 𝑣 = 𝑁 → ( 𝑉 ∖ { 𝑣 } ) = ( 𝑉 ∖ { 𝑁 } ) ) |
7 |
|
preq2 |
⊢ ( 𝑣 = 𝑁 → { 𝑘 , 𝑣 } = { 𝑘 , 𝑁 } ) |
8 |
7
|
eleq1d |
⊢ ( 𝑣 = 𝑁 → ( { 𝑘 , 𝑣 } ∈ 𝐸 ↔ { 𝑘 , 𝑁 } ∈ 𝐸 ) ) |
9 |
6 8
|
raleqbidv |
⊢ ( 𝑣 = 𝑁 → ( ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑘 , 𝑣 } ∈ 𝐸 ↔ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑘 , 𝑁 } ∈ 𝐸 ) ) |
10 |
9
|
elrab |
⊢ ( 𝑁 ∈ { 𝑣 ∈ 𝑉 ∣ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑣 } ) { 𝑘 , 𝑣 } ∈ 𝐸 } ↔ ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑘 , 𝑁 } ∈ 𝐸 ) ) |
11 |
4 10
|
bitrdi |
⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑁 ∈ 𝑉 ∧ ∀ 𝑘 ∈ ( 𝑉 ∖ { 𝑁 } ) { 𝑘 , 𝑁 } ∈ 𝐸 ) ) ) |