Step |
Hyp |
Ref |
Expression |
1 |
|
uvtxval.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
df-uvtx |
⊢ UnivVtx = ( 𝑔 ∈ V ↦ { 𝑣 ∈ ( Vtx ‘ 𝑔 ) ∣ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) 𝑛 ∈ ( 𝑔 NeighbVtx 𝑣 ) } ) |
3 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
4 |
3 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
5 |
4
|
difeq1d |
⊢ ( 𝑔 = 𝐺 → ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) = ( 𝑉 ∖ { 𝑣 } ) ) |
6 |
|
oveq1 |
⊢ ( 𝑔 = 𝐺 → ( 𝑔 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝑣 ) ) |
7 |
6
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑛 ∈ ( 𝑔 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
8 |
5 7
|
raleqbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) 𝑛 ∈ ( 𝑔 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
9 |
2 8
|
fvmptrabfv |
⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |
10 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
11 |
10
|
rabeqi |
⊢ { 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |
12 |
9 11
|
eqtri |
⊢ ( UnivVtx ‘ 𝐺 ) = { 𝑣 ∈ 𝑉 ∣ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) } |