Metamath Proof Explorer


Theorem uz0

Description: The upper integers function applied to a non-integer, is the empty set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Assertion uz0 ( ¬ 𝑀 ∈ ℤ → ( ℤ𝑀 ) = ∅ )

Proof

Step Hyp Ref Expression
1 dmuz dom ℤ = ℤ
2 1 eqcomi ℤ = dom ℤ
3 2 eleq2i ( 𝑀 ∈ ℤ ↔ 𝑀 ∈ dom ℤ )
4 3 notbii ( ¬ 𝑀 ∈ ℤ ↔ ¬ 𝑀 ∈ dom ℤ )
5 4 biimpi ( ¬ 𝑀 ∈ ℤ → ¬ 𝑀 ∈ dom ℤ )
6 ndmfv ( ¬ 𝑀 ∈ dom ℤ → ( ℤ𝑀 ) = ∅ )
7 5 6 syl ( ¬ 𝑀 ∈ ℤ → ( ℤ𝑀 ) = ∅ )