Step |
Hyp |
Ref |
Expression |
1 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
2 |
|
eleq2 |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
3 |
|
eluzel2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) |
4 |
2 3
|
syl6bi |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) ) |
5 |
1 4
|
mpan9 |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ℤ ) |
6 |
|
uzid |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
7 |
|
eleq2 |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
8 |
6 7
|
syl5ibr |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
9 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
10 |
8 9
|
syl6 |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑀 ≤ 𝑁 ) ) |
11 |
1 2
|
syl5ib |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
12 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) |
13 |
11 12
|
syl6 |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ∈ ℤ → 𝑁 ≤ 𝑀 ) ) |
14 |
10 13
|
anim12d |
⊢ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
15 |
14
|
impl |
⊢ ( ( ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
16 |
15
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ℤ ) ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
17 |
16
|
anassrs |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) |
18 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
19 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
20 |
|
letri3 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
21 |
18 19 20
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
22 |
21
|
adantlr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → ( 𝑀 = 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑀 ) ) ) |
23 |
17 22
|
mpbird |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑁 ∈ ℤ ) → 𝑀 = 𝑁 ) |
24 |
5 23
|
mpdan |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 = 𝑁 ) |
25 |
24
|
ex |
⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) → 𝑀 = 𝑁 ) ) |
26 |
|
fveq2 |
⊢ ( 𝑀 = 𝑁 → ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ) |
27 |
25 26
|
impbid1 |
⊢ ( 𝑀 ∈ ℤ → ( ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑁 ) ↔ 𝑀 = 𝑁 ) ) |