Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | uz2m1nn | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) ) | |
2 | 1z | ⊢ 1 ∈ ℤ | |
3 | znnsub | ⊢ ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 𝑁 − 1 ) ∈ ℕ ) ) | |
4 | 2 3 | mpan | ⊢ ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ ( 𝑁 − 1 ) ∈ ℕ ) ) |
5 | 4 | biimpa | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ ) |
6 | 1 5 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ ) |