Metamath Proof Explorer


Theorem uz2m1nn

Description: One less than an integer greater than or equal to 2 is a positive integer. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion uz2m1nn ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 eluz2b1 ( 𝑁 ∈ ( ℤ ‘ 2 ) ↔ ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) )
2 1z 1 ∈ ℤ
3 znnsub ( ( 1 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 < 𝑁 ↔ ( 𝑁 − 1 ) ∈ ℕ ) )
4 2 3 mpan ( 𝑁 ∈ ℤ → ( 1 < 𝑁 ↔ ( 𝑁 − 1 ) ∈ ℕ ) )
5 4 biimpa ( ( 𝑁 ∈ ℤ ∧ 1 < 𝑁 ) → ( 𝑁 − 1 ) ∈ ℕ )
6 1 5 sylbi ( 𝑁 ∈ ( ℤ ‘ 2 ) → ( 𝑁 − 1 ) ∈ ℕ )