| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eluz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  ↔  ( 3  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  3  ≤  𝑁 ) ) | 
						
							| 2 |  | 2lt3 | ⊢ 2  <  3 | 
						
							| 3 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 4 |  | 3re | ⊢ 3  ∈  ℝ | 
						
							| 5 |  | zre | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℝ ) | 
						
							| 6 |  | ltletr | ⊢ ( ( 2  ∈  ℝ  ∧  3  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  ( ( 2  <  3  ∧  3  ≤  𝑁 )  →  2  <  𝑁 ) ) | 
						
							| 7 | 3 4 5 6 | mp3an12i | ⊢ ( 𝑁  ∈  ℤ  →  ( ( 2  <  3  ∧  3  ≤  𝑁 )  →  2  <  𝑁 ) ) | 
						
							| 8 | 2 7 | mpani | ⊢ ( 𝑁  ∈  ℤ  →  ( 3  ≤  𝑁  →  2  <  𝑁 ) ) | 
						
							| 9 | 8 | imp | ⊢ ( ( 𝑁  ∈  ℤ  ∧  3  ≤  𝑁 )  →  2  <  𝑁 ) | 
						
							| 10 | 9 | 3adant1 | ⊢ ( ( 3  ∈  ℤ  ∧  𝑁  ∈  ℤ  ∧  3  ≤  𝑁 )  →  2  <  𝑁 ) | 
						
							| 11 | 1 10 | sylbi | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  2  <  𝑁 ) | 
						
							| 12 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 13 |  | eluzge3nn | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  𝑁  ∈  ℕ ) | 
						
							| 14 |  | nnsub | ⊢ ( ( 2  ∈  ℕ  ∧  𝑁  ∈  ℕ )  →  ( 2  <  𝑁  ↔  ( 𝑁  −  2 )  ∈  ℕ ) ) | 
						
							| 15 | 12 13 14 | sylancr | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 2  <  𝑁  ↔  ( 𝑁  −  2 )  ∈  ℕ ) ) | 
						
							| 16 | 11 15 | mpbid | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 3 )  →  ( 𝑁  −  2 )  ∈  ℕ ) |