Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) |
2 |
|
nn0cn |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) |
3 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
4 |
|
addass |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
5 |
3 4
|
mp3an3 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
6 |
1 2 5
|
syl2anr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
8 |
|
peano2uz |
⊢ ( ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝑁 + 𝑘 ) + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
10 |
7 9
|
eqeltrrd |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
11 |
10
|
exp31 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
12 |
11
|
a2d |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
13 |
1
|
addid1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) = 𝑁 ) |
14 |
13
|
eleq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
15 |
14
|
ibir |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
16 |
|
oveq2 |
⊢ ( 𝑗 = 0 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 0 ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑗 = 0 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
18 |
17
|
imbi2d |
⊢ ( 𝑗 = 0 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 0 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
19 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 𝑘 ) ) |
20 |
19
|
eleq1d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
21 |
20
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑘 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑁 + 𝑗 ) = ( 𝑁 + ( 𝑘 + 1 ) ) ) |
23 |
22
|
eleq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
24 |
23
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + ( 𝑘 + 1 ) ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
25 |
|
oveq2 |
⊢ ( 𝑗 = 𝐾 → ( 𝑁 + 𝑗 ) = ( 𝑁 + 𝐾 ) ) |
26 |
25
|
eleq1d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑗 = 𝐾 → ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝑗 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ↔ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) ) |
28 |
12 15 18 21 24 27
|
nn0indALT |
⊢ ( 𝐾 ∈ ℕ0 → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝐾 ∈ ℕ0 ) → ( 𝑁 + 𝐾 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |