Metamath Proof Explorer


Theorem uzct

Description: An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis uzct.1 𝑍 = ( ℤ𝑁 )
Assertion uzct 𝑍 ≼ ω

Proof

Step Hyp Ref Expression
1 uzct.1 𝑍 = ( ℤ𝑁 )
2 uzssz ( ℤ𝑁 ) ⊆ ℤ
3 1 2 eqsstri 𝑍 ⊆ ℤ
4 zex ℤ ∈ V
5 ssdomg ( ℤ ∈ V → ( 𝑍 ⊆ ℤ → 𝑍 ≼ ℤ ) )
6 4 5 ax-mp ( 𝑍 ⊆ ℤ → 𝑍 ≼ ℤ )
7 3 6 ax-mp 𝑍 ≼ ℤ
8 zct ℤ ≼ ω
9 domtr ( ( 𝑍 ≼ ℤ ∧ ℤ ≼ ω ) → 𝑍 ≼ ω )
10 7 8 9 mp2an 𝑍 ≼ ω