Metamath Proof Explorer
Description: An upper integer set is countable. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypothesis |
uzct.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
|
Assertion |
uzct |
⊢ 𝑍 ≼ ω |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzct.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑁 ) |
| 2 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑁 ) ⊆ ℤ |
| 3 |
1 2
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
| 4 |
|
zex |
⊢ ℤ ∈ V |
| 5 |
|
ssdomg |
⊢ ( ℤ ∈ V → ( 𝑍 ⊆ ℤ → 𝑍 ≼ ℤ ) ) |
| 6 |
4 5
|
ax-mp |
⊢ ( 𝑍 ⊆ ℤ → 𝑍 ≼ ℤ ) |
| 7 |
3 6
|
ax-mp |
⊢ 𝑍 ≼ ℤ |
| 8 |
|
zct |
⊢ ℤ ≼ ω |
| 9 |
|
domtr |
⊢ ( ( 𝑍 ≼ ℤ ∧ ℤ ≼ ω ) → 𝑍 ≼ ω ) |
| 10 |
7 8 9
|
mp2an |
⊢ 𝑍 ≼ ω |