Metamath Proof Explorer


Theorem uzfissfz

Description: For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses uzfissfz.m ( 𝜑𝑀 ∈ ℤ )
uzfissfz.z 𝑍 = ( ℤ𝑀 )
uzfissfz.a ( 𝜑𝐴𝑍 )
uzfissfz.fi ( 𝜑𝐴 ∈ Fin )
Assertion uzfissfz ( 𝜑 → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )

Proof

Step Hyp Ref Expression
1 uzfissfz.m ( 𝜑𝑀 ∈ ℤ )
2 uzfissfz.z 𝑍 = ( ℤ𝑀 )
3 uzfissfz.a ( 𝜑𝐴𝑍 )
4 uzfissfz.fi ( 𝜑𝐴 ∈ Fin )
5 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
6 1 5 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
7 2 a1i ( 𝜑𝑍 = ( ℤ𝑀 ) )
8 7 eqcomd ( 𝜑 → ( ℤ𝑀 ) = 𝑍 )
9 6 8 eleqtrd ( 𝜑𝑀𝑍 )
10 9 adantr ( ( 𝜑𝐴 = ∅ ) → 𝑀𝑍 )
11 id ( 𝐴 = ∅ → 𝐴 = ∅ )
12 0ss ∅ ⊆ ( 𝑀 ... 𝑀 )
13 12 a1i ( 𝐴 = ∅ → ∅ ⊆ ( 𝑀 ... 𝑀 ) )
14 11 13 eqsstrd ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝑀 ... 𝑀 ) )
15 14 adantl ( ( 𝜑𝐴 = ∅ ) → 𝐴 ⊆ ( 𝑀 ... 𝑀 ) )
16 oveq2 ( 𝑘 = 𝑀 → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... 𝑀 ) )
17 16 sseq2d ( 𝑘 = 𝑀 → ( 𝐴 ⊆ ( 𝑀 ... 𝑘 ) ↔ 𝐴 ⊆ ( 𝑀 ... 𝑀 ) ) )
18 17 rspcev ( ( 𝑀𝑍𝐴 ⊆ ( 𝑀 ... 𝑀 ) ) → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )
19 10 15 18 syl2anc ( ( 𝜑𝐴 = ∅ ) → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )
20 3 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴𝑍 )
21 uzssz ( ℤ𝑀 ) ⊆ ℤ
22 2 21 eqsstri 𝑍 ⊆ ℤ
23 22 a1i ( 𝜑𝑍 ⊆ ℤ )
24 3 23 sstrd ( 𝜑𝐴 ⊆ ℤ )
25 24 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ⊆ ℤ )
26 11 necon3bi ( ¬ 𝐴 = ∅ → 𝐴 ≠ ∅ )
27 26 adantl ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ≠ ∅ )
28 4 adantr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ∈ Fin )
29 suprfinzcl ( ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 )
30 25 27 28 29 syl3anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ 𝐴 )
31 20 30 sseldd ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ 𝑍 )
32 1 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑀 ∈ ℤ )
33 22 31 sseldi ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → sup ( 𝐴 , ℝ , < ) ∈ ℤ )
34 33 adantr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → sup ( 𝐴 , ℝ , < ) ∈ ℤ )
35 25 sselda ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑗 ∈ ℤ )
36 32 34 35 3jca ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → ( 𝑀 ∈ ℤ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) )
37 3 sselda ( ( 𝜑𝑗𝐴 ) → 𝑗𝑍 )
38 2 a1i ( ( 𝜑𝑗𝐴 ) → 𝑍 = ( ℤ𝑀 ) )
39 37 38 eleqtrd ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ ( ℤ𝑀 ) )
40 eluzle ( 𝑗 ∈ ( ℤ𝑀 ) → 𝑀𝑗 )
41 39 40 syl ( ( 𝜑𝑗𝐴 ) → 𝑀𝑗 )
42 41 adantlr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑀𝑗 )
43 zssre ℤ ⊆ ℝ
44 24 43 sstrdi ( 𝜑𝐴 ⊆ ℝ )
45 44 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝐴 ⊆ ℝ )
46 27 adantr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝐴 ≠ ∅ )
47 fimaxre2 ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ∈ Fin ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
48 44 4 47 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
49 48 ad2antrr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 )
50 simpr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑗𝐴 )
51 suprub ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦𝐴 𝑦𝑥 ) ∧ 𝑗𝐴 ) → 𝑗 ≤ sup ( 𝐴 , ℝ , < ) )
52 45 46 49 50 51 syl31anc ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑗 ≤ sup ( 𝐴 , ℝ , < ) )
53 36 42 52 jca32 ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → ( ( 𝑀 ∈ ℤ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑀𝑗𝑗 ≤ sup ( 𝐴 , ℝ , < ) ) ) )
54 elfz2 ( 𝑗 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ↔ ( ( 𝑀 ∈ ℤ ∧ sup ( 𝐴 , ℝ , < ) ∈ ℤ ∧ 𝑗 ∈ ℤ ) ∧ ( 𝑀𝑗𝑗 ≤ sup ( 𝐴 , ℝ , < ) ) ) )
55 53 54 sylibr ( ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) ∧ 𝑗𝐴 ) → 𝑗 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) )
56 55 ralrimiva ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∀ 𝑗𝐴 𝑗 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) )
57 dfss3 ( 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ↔ ∀ 𝑗𝐴 𝑗 ∈ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) )
58 56 57 sylibr ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) )
59 oveq2 ( 𝑘 = sup ( 𝐴 , ℝ , < ) → ( 𝑀 ... 𝑘 ) = ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) )
60 59 sseq2d ( 𝑘 = sup ( 𝐴 , ℝ , < ) → ( 𝐴 ⊆ ( 𝑀 ... 𝑘 ) ↔ 𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) )
61 60 rspcev ( ( sup ( 𝐴 , ℝ , < ) ∈ 𝑍𝐴 ⊆ ( 𝑀 ... sup ( 𝐴 , ℝ , < ) ) ) → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )
62 31 58 61 syl2anc ( ( 𝜑 ∧ ¬ 𝐴 = ∅ ) → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )
63 19 62 pm2.61dan ( 𝜑 → ∃ 𝑘𝑍 𝐴 ⊆ ( 𝑀 ... 𝑘 ) )