Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypothesis | uzid3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
Assertion | uzid3 | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzid3.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
2 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
3 | 2 | biimpi | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 | uzid2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) | |
5 | 3 4 | syl | ⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ ( ℤ≥ ‘ 𝑁 ) ) |