Metamath Proof Explorer


Theorem uzid3

Description: Membership of the least member in an upper set of integers. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypothesis uzid3.1 𝑍 = ( ℤ𝑀 )
Assertion uzid3 ( 𝑁𝑍𝑁 ∈ ( ℤ𝑁 ) )

Proof

Step Hyp Ref Expression
1 uzid3.1 𝑍 = ( ℤ𝑀 )
2 1 eleq2i ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
3 2 biimpi ( 𝑁𝑍𝑁 ∈ ( ℤ𝑀 ) )
4 uzid2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( ℤ𝑁 ) )
5 3 4 syl ( 𝑁𝑍𝑁 ∈ ( ℤ𝑁 ) )