Step |
Hyp |
Ref |
Expression |
1 |
|
uztric |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) |
2 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
3 |
|
sseqin2 |
⊢ ( ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
4 |
2 3
|
sylib |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
5 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
6 |
|
iftrue |
⊢ ( 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑁 ) |
7 |
5 6
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑁 ) |
8 |
7
|
fveq2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
9 |
4 8
|
eqtr4d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
10 |
|
uzss |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ) |
11 |
|
df-ss |
⊢ ( ( ℤ≥ ‘ 𝑀 ) ⊆ ( ℤ≥ ‘ 𝑁 ) ↔ ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
12 |
10 11
|
sylib |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
13 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) |
14 |
|
eluzel2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ∈ ℤ ) |
15 |
|
eluzelz |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑀 ∈ ℤ ) |
16 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
17 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
18 |
|
letri3 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
19 |
16 17 18
|
syl2an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
20 |
14 15 19
|
syl2anc |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 = 𝑀 ↔ ( 𝑁 ≤ 𝑀 ∧ 𝑀 ≤ 𝑁 ) ) ) |
21 |
13 20
|
mpbirand |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 = 𝑀 ↔ 𝑀 ≤ 𝑁 ) ) |
22 |
21
|
biimprcd |
⊢ ( 𝑀 ≤ 𝑁 → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 = 𝑀 ) ) |
23 |
6
|
eqeq1d |
⊢ ( 𝑀 ≤ 𝑁 → ( if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ↔ 𝑁 = 𝑀 ) ) |
24 |
22 23
|
sylibrd |
⊢ ( 𝑀 ≤ 𝑁 → ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) ) |
25 |
24
|
com12 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) ) |
26 |
|
iffalse |
⊢ ( ¬ 𝑀 ≤ 𝑁 → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) |
27 |
25 26
|
pm2.61d1 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) = 𝑀 ) |
28 |
27
|
fveq2d |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) = ( ℤ≥ ‘ 𝑀 ) ) |
29 |
12 28
|
eqtr4d |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
30 |
9 29
|
jaoi |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∨ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |
31 |
1 30
|
syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ≥ ‘ 𝑁 ) ) = ( ℤ≥ ‘ if ( 𝑀 ≤ 𝑁 , 𝑁 , 𝑀 ) ) ) |