Step |
Hyp |
Ref |
Expression |
1 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
2 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
3 |
1 2
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
4 |
|
fvelrnb |
⊢ ( ℤ≥ Fn ℤ → ( 𝐴 ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = 𝐴 ) ) |
5 |
3 4
|
ax-mp |
⊢ ( 𝐴 ∈ ran ℤ≥ ↔ ∃ 𝑥 ∈ ℤ ( ℤ≥ ‘ 𝑥 ) = 𝐴 ) |
6 |
|
fvelrnb |
⊢ ( ℤ≥ Fn ℤ → ( 𝐵 ∈ ran ℤ≥ ↔ ∃ 𝑦 ∈ ℤ ( ℤ≥ ‘ 𝑦 ) = 𝐵 ) ) |
7 |
3 6
|
ax-mp |
⊢ ( 𝐵 ∈ ran ℤ≥ ↔ ∃ 𝑦 ∈ ℤ ( ℤ≥ ‘ 𝑦 ) = 𝐵 ) |
8 |
|
ineq1 |
⊢ ( ( ℤ≥ ‘ 𝑥 ) = 𝐴 → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ) |
9 |
8
|
eleq1d |
⊢ ( ( ℤ≥ ‘ 𝑥 ) = 𝐴 → ( ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ↔ ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ) ) |
10 |
|
ineq2 |
⊢ ( ( ℤ≥ ‘ 𝑦 ) = 𝐵 → ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
11 |
10
|
eleq1d |
⊢ ( ( ℤ≥ ‘ 𝑦 ) = 𝐵 → ( ( 𝐴 ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ↔ ( 𝐴 ∩ 𝐵 ) ∈ ran ℤ≥ ) ) |
12 |
|
uzin |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) = ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ) |
13 |
|
ifcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑥 ∈ ℤ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) |
14 |
13
|
ancoms |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) |
15 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ∈ ran ℤ≥ ) |
16 |
3 14 15
|
sylancr |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑥 ≤ 𝑦 , 𝑦 , 𝑥 ) ) ∈ ran ℤ≥ ) |
17 |
12 16
|
eqeltrd |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ ( ℤ≥ ‘ 𝑦 ) ) ∈ ran ℤ≥ ) |
18 |
5 7 9 11 17
|
2gencl |
⊢ ( ( 𝐴 ∈ ran ℤ≥ ∧ 𝐵 ∈ ran ℤ≥ ) → ( 𝐴 ∩ 𝐵 ) ∈ ran ℤ≥ ) |