| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzind4.1 |
⊢ ( 𝑗 = 𝑀 → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
uzind4.2 |
⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
uzind4.3 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
uzind4.4 |
⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
uzind4.5 |
⊢ ( 𝑀 ∈ ℤ → 𝜓 ) |
| 6 |
|
uzind4.6 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜒 → 𝜃 ) ) |
| 7 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 8 |
|
breq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑁 ) ) |
| 9 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 10 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
| 11 |
8 9 10
|
elrabd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) |
| 12 |
|
breq2 |
⊢ ( 𝑚 = 𝑘 → ( 𝑀 ≤ 𝑚 ↔ 𝑀 ≤ 𝑘 ) ) |
| 13 |
12
|
elrab |
⊢ ( 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) |
| 14 |
|
eluz2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) |
| 15 |
14
|
biimpri |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 16 |
15
|
3expb |
⊢ ( ( 𝑀 ∈ ℤ ∧ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 17 |
13 16
|
sylan2b |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 18 |
17 6
|
syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → ( 𝜒 → 𝜃 ) ) |
| 19 |
1 2 3 4 5 18
|
uzind3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ { 𝑚 ∈ ℤ ∣ 𝑀 ≤ 𝑚 } ) → 𝜏 ) |
| 20 |
7 11 19
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝜏 ) |