Metamath Proof Explorer


Theorem uzind4s

Description: Induction on the upper set of integers that starts at an integer M , using explicit substitution. The hypotheses are the basis and the induction step. (Contributed by NM, 4-Nov-2005)

Ref Expression
Hypotheses uzind4s.1 ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑘 ] 𝜑 )
uzind4s.2 ( 𝑘 ∈ ( ℤ𝑀 ) → ( 𝜑[ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) )
Assertion uzind4s ( 𝑁 ∈ ( ℤ𝑀 ) → [ 𝑁 / 𝑘 ] 𝜑 )

Proof

Step Hyp Ref Expression
1 uzind4s.1 ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑘 ] 𝜑 )
2 uzind4s.2 ( 𝑘 ∈ ( ℤ𝑀 ) → ( 𝜑[ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) )
3 dfsbcq2 ( 𝑗 = 𝑀 → ( [ 𝑗 / 𝑘 ] 𝜑[ 𝑀 / 𝑘 ] 𝜑 ) )
4 sbequ ( 𝑗 = 𝑚 → ( [ 𝑗 / 𝑘 ] 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) )
5 dfsbcq2 ( 𝑗 = ( 𝑚 + 1 ) → ( [ 𝑗 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) )
6 dfsbcq2 ( 𝑗 = 𝑁 → ( [ 𝑗 / 𝑘 ] 𝜑[ 𝑁 / 𝑘 ] 𝜑 ) )
7 nfv 𝑘 𝑚 ∈ ( ℤ𝑀 )
8 nfs1v 𝑘 [ 𝑚 / 𝑘 ] 𝜑
9 nfsbc1v 𝑘 [ ( 𝑚 + 1 ) / 𝑘 ] 𝜑
10 8 9 nfim 𝑘 ( [ 𝑚 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 )
11 7 10 nfim 𝑘 ( 𝑚 ∈ ( ℤ𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) )
12 eleq1w ( 𝑘 = 𝑚 → ( 𝑘 ∈ ( ℤ𝑀 ) ↔ 𝑚 ∈ ( ℤ𝑀 ) ) )
13 sbequ12 ( 𝑘 = 𝑚 → ( 𝜑 ↔ [ 𝑚 / 𝑘 ] 𝜑 ) )
14 oveq1 ( 𝑘 = 𝑚 → ( 𝑘 + 1 ) = ( 𝑚 + 1 ) )
15 14 sbceq1d ( 𝑘 = 𝑚 → ( [ ( 𝑘 + 1 ) / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) )
16 13 15 imbi12d ( 𝑘 = 𝑚 → ( ( 𝜑[ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ↔ ( [ 𝑚 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) )
17 12 16 imbi12d ( 𝑘 = 𝑚 → ( ( 𝑘 ∈ ( ℤ𝑀 ) → ( 𝜑[ ( 𝑘 + 1 ) / 𝑘 ] 𝜑 ) ) ↔ ( 𝑚 ∈ ( ℤ𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) ) ) )
18 11 17 2 chvarfv ( 𝑚 ∈ ( ℤ𝑀 ) → ( [ 𝑚 / 𝑘 ] 𝜑[ ( 𝑚 + 1 ) / 𝑘 ] 𝜑 ) )
19 3 4 5 6 1 18 uzind4 ( 𝑁 ∈ ( ℤ𝑀 ) → [ 𝑁 / 𝑘 ] 𝜑 )