| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind4s.1 | ⊢ ( 𝑀  ∈  ℤ  →  [ 𝑀  /  𝑘 ] 𝜑 ) | 
						
							| 2 |  | uzind4s.2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  [ ( 𝑘  +  1 )  /  𝑘 ] 𝜑 ) ) | 
						
							| 3 |  | dfsbcq2 | ⊢ ( 𝑗  =  𝑀  →  ( [ 𝑗  /  𝑘 ] 𝜑  ↔  [ 𝑀  /  𝑘 ] 𝜑 ) ) | 
						
							| 4 |  | sbequ | ⊢ ( 𝑗  =  𝑚  →  ( [ 𝑗  /  𝑘 ] 𝜑  ↔  [ 𝑚  /  𝑘 ] 𝜑 ) ) | 
						
							| 5 |  | dfsbcq2 | ⊢ ( 𝑗  =  ( 𝑚  +  1 )  →  ( [ 𝑗  /  𝑘 ] 𝜑  ↔  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) | 
						
							| 6 |  | dfsbcq2 | ⊢ ( 𝑗  =  𝑁  →  ( [ 𝑗  /  𝑘 ] 𝜑  ↔  [ 𝑁  /  𝑘 ] 𝜑 ) ) | 
						
							| 7 |  | nfv | ⊢ Ⅎ 𝑘 𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 8 |  | nfs1v | ⊢ Ⅎ 𝑘 [ 𝑚  /  𝑘 ] 𝜑 | 
						
							| 9 |  | nfsbc1v | ⊢ Ⅎ 𝑘 [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 | 
						
							| 10 | 8 9 | nfim | ⊢ Ⅎ 𝑘 ( [ 𝑚  /  𝑘 ] 𝜑  →  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) | 
						
							| 11 | 7 10 | nfim | ⊢ Ⅎ 𝑘 ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( [ 𝑚  /  𝑘 ] 𝜑  →  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) | 
						
							| 12 |  | eleq1w | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) ) | 
						
							| 13 |  | sbequ12 | ⊢ ( 𝑘  =  𝑚  →  ( 𝜑  ↔  [ 𝑚  /  𝑘 ] 𝜑 ) ) | 
						
							| 14 |  | oveq1 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑘  +  1 )  =  ( 𝑚  +  1 ) ) | 
						
							| 15 | 14 | sbceq1d | ⊢ ( 𝑘  =  𝑚  →  ( [ ( 𝑘  +  1 )  /  𝑘 ] 𝜑  ↔  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) | 
						
							| 16 | 13 15 | imbi12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝜑  →  [ ( 𝑘  +  1 )  /  𝑘 ] 𝜑 )  ↔  ( [ 𝑚  /  𝑘 ] 𝜑  →  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) ) | 
						
							| 17 | 12 16 | imbi12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  [ ( 𝑘  +  1 )  /  𝑘 ] 𝜑 ) )  ↔  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( [ 𝑚  /  𝑘 ] 𝜑  →  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) ) ) | 
						
							| 18 | 11 17 2 | chvarfv | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( [ 𝑚  /  𝑘 ] 𝜑  →  [ ( 𝑚  +  1 )  /  𝑘 ] 𝜑 ) ) | 
						
							| 19 | 3 4 5 6 1 18 | uzind4 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  [ 𝑁  /  𝑘 ] 𝜑 ) |