Step |
Hyp |
Ref |
Expression |
1 |
|
uzind4s2.1 |
⊢ ( 𝑀 ∈ ℤ → [ 𝑀 / 𝑗 ] 𝜑 ) |
2 |
|
uzind4s2.2 |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑘 / 𝑗 ] 𝜑 → [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ) ) |
3 |
|
dfsbcq |
⊢ ( 𝑚 = 𝑀 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑀 / 𝑗 ] 𝜑 ) ) |
4 |
|
dfsbcq |
⊢ ( 𝑚 = 𝑛 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑛 / 𝑗 ] 𝜑 ) ) |
5 |
|
dfsbcq |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) |
6 |
|
dfsbcq |
⊢ ( 𝑚 = 𝑁 → ( [ 𝑚 / 𝑗 ] 𝜑 ↔ [ 𝑁 / 𝑗 ] 𝜑 ) ) |
7 |
|
dfsbcq |
⊢ ( 𝑘 = 𝑛 → ( [ 𝑘 / 𝑗 ] 𝜑 ↔ [ 𝑛 / 𝑗 ] 𝜑 ) ) |
8 |
|
oveq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 + 1 ) = ( 𝑛 + 1 ) ) |
9 |
8
|
sbceq1d |
⊢ ( 𝑘 = 𝑛 → ( [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ↔ [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) |
10 |
7 9
|
imbi12d |
⊢ ( 𝑘 = 𝑛 → ( ( [ 𝑘 / 𝑗 ] 𝜑 → [ ( 𝑘 + 1 ) / 𝑗 ] 𝜑 ) ↔ ( [ 𝑛 / 𝑗 ] 𝜑 → [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) ) |
11 |
10 2
|
vtoclga |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( [ 𝑛 / 𝑗 ] 𝜑 → [ ( 𝑛 + 1 ) / 𝑗 ] 𝜑 ) ) |
12 |
3 4 5 6 1 11
|
uzind4 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → [ 𝑁 / 𝑗 ] 𝜑 ) |