| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzind4s2.1 | ⊢ ( 𝑀  ∈  ℤ  →  [ 𝑀  /  𝑗 ] 𝜑 ) | 
						
							| 2 |  | uzind4s2.2 | ⊢ ( 𝑘  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( [ 𝑘  /  𝑗 ] 𝜑  →  [ ( 𝑘  +  1 )  /  𝑗 ] 𝜑 ) ) | 
						
							| 3 |  | dfsbcq | ⊢ ( 𝑚  =  𝑀  →  ( [ 𝑚  /  𝑗 ] 𝜑  ↔  [ 𝑀  /  𝑗 ] 𝜑 ) ) | 
						
							| 4 |  | dfsbcq | ⊢ ( 𝑚  =  𝑛  →  ( [ 𝑚  /  𝑗 ] 𝜑  ↔  [ 𝑛  /  𝑗 ] 𝜑 ) ) | 
						
							| 5 |  | dfsbcq | ⊢ ( 𝑚  =  ( 𝑛  +  1 )  →  ( [ 𝑚  /  𝑗 ] 𝜑  ↔  [ ( 𝑛  +  1 )  /  𝑗 ] 𝜑 ) ) | 
						
							| 6 |  | dfsbcq | ⊢ ( 𝑚  =  𝑁  →  ( [ 𝑚  /  𝑗 ] 𝜑  ↔  [ 𝑁  /  𝑗 ] 𝜑 ) ) | 
						
							| 7 |  | dfsbcq | ⊢ ( 𝑘  =  𝑛  →  ( [ 𝑘  /  𝑗 ] 𝜑  ↔  [ 𝑛  /  𝑗 ] 𝜑 ) ) | 
						
							| 8 |  | oveq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  +  1 )  =  ( 𝑛  +  1 ) ) | 
						
							| 9 | 8 | sbceq1d | ⊢ ( 𝑘  =  𝑛  →  ( [ ( 𝑘  +  1 )  /  𝑗 ] 𝜑  ↔  [ ( 𝑛  +  1 )  /  𝑗 ] 𝜑 ) ) | 
						
							| 10 | 7 9 | imbi12d | ⊢ ( 𝑘  =  𝑛  →  ( ( [ 𝑘  /  𝑗 ] 𝜑  →  [ ( 𝑘  +  1 )  /  𝑗 ] 𝜑 )  ↔  ( [ 𝑛  /  𝑗 ] 𝜑  →  [ ( 𝑛  +  1 )  /  𝑗 ] 𝜑 ) ) ) | 
						
							| 11 | 10 2 | vtoclga | ⊢ ( 𝑛  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( [ 𝑛  /  𝑗 ] 𝜑  →  [ ( 𝑛  +  1 )  /  𝑗 ] 𝜑 ) ) | 
						
							| 12 | 3 4 5 6 1 11 | uzind4 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  [ 𝑁  /  𝑗 ] 𝜑 ) |