Metamath Proof Explorer


Theorem uzinf

Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis uzinf.1 𝑍 = ( ℤ𝑀 )
Assertion uzinf ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin )

Proof

Step Hyp Ref Expression
1 uzinf.1 𝑍 = ( ℤ𝑀 )
2 ominf ¬ ω ∈ Fin
3 1 uzenom ( 𝑀 ∈ ℤ → 𝑍 ≈ ω )
4 enfi ( 𝑍 ≈ ω → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) )
5 3 4 syl ( 𝑀 ∈ ℤ → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) )
6 2 5 mtbiri ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin )