Metamath Proof Explorer
Description: An upper integer set is infinite. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Mario Carneiro, 26-Jun-2015)
|
|
Ref |
Expression |
|
Hypothesis |
uzinf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
Assertion |
uzinf |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzinf.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 2 |
|
ominf |
⊢ ¬ ω ∈ Fin |
| 3 |
1
|
uzenom |
⊢ ( 𝑀 ∈ ℤ → 𝑍 ≈ ω ) |
| 4 |
|
enfi |
⊢ ( 𝑍 ≈ ω → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑀 ∈ ℤ → ( 𝑍 ∈ Fin ↔ ω ∈ Fin ) ) |
| 6 |
2 5
|
mtbiri |
⊢ ( 𝑀 ∈ ℤ → ¬ 𝑍 ∈ Fin ) |