| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzinico2.1 |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 2 |
|
inass |
⊢ ( ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) ∩ ( 𝑁 [,) +∞ ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) |
| 3 |
2
|
a1i |
⊢ ( 𝜑 → ( ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) ∩ ( 𝑁 [,) +∞ ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) ) |
| 4 |
|
incom |
⊢ ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) = ( ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ∩ ( ℤ≥ ‘ 𝑀 ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) = ( ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ∩ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 6 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) |
| 8 |
7 1
|
sseldd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 9 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑁 ) = ( ℤ≥ ‘ 𝑁 ) |
| 10 |
8 9
|
uzinico |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) = ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) |
| 11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( ℤ ∩ ( 𝑁 [,) +∞ ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 12 |
11
|
ineq1d |
⊢ ( 𝜑 → ( ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ( ℤ≥ ‘ 𝑁 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 13 |
1
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
| 14 |
|
dfss2 |
⊢ ( ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ↔ ( ( ℤ≥ ‘ 𝑁 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 15 |
13 14
|
sylib |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑁 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 16 |
5 12 15
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑀 ) ∩ ( ℤ ∩ ( 𝑁 [,) +∞ ) ) ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 17 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑁 ) ⊆ ℤ |
| 18 |
|
dfss2 |
⊢ ( ( ℤ≥ ‘ 𝑁 ) ⊆ ℤ ↔ ( ( ℤ≥ ‘ 𝑁 ) ∩ ℤ ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 19 |
17 18
|
mpbi |
⊢ ( ( ℤ≥ ‘ 𝑁 ) ∩ ℤ ) = ( ℤ≥ ‘ 𝑁 ) |
| 20 |
19
|
a1i |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑁 ) ∩ ℤ ) = ( ℤ≥ ‘ 𝑁 ) ) |
| 21 |
20
|
eqcomd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) = ( ( ℤ≥ ‘ 𝑁 ) ∩ ℤ ) ) |
| 22 |
3 16 21
|
3eqtrrd |
⊢ ( 𝜑 → ( ( ℤ≥ ‘ 𝑁 ) ∩ ℤ ) = ( ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) ∩ ( 𝑁 [,) +∞ ) ) ) |
| 23 |
|
dfss2 |
⊢ ( ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ↔ ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) = ( ℤ≥ ‘ 𝑀 ) ) |
| 24 |
6 23
|
mpbi |
⊢ ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) = ( ℤ≥ ‘ 𝑀 ) |
| 25 |
24
|
ineq1i |
⊢ ( ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) ∩ ( 𝑁 [,) +∞ ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( 𝑁 [,) +∞ ) ) |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → ( ( ( ℤ≥ ‘ 𝑀 ) ∩ ℤ ) ∩ ( 𝑁 [,) +∞ ) ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( 𝑁 [,) +∞ ) ) ) |
| 27 |
22 20 26
|
3eqtr3d |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) = ( ( ℤ≥ ‘ 𝑀 ) ∩ ( 𝑁 [,) +∞ ) ) ) |