| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 2 |
1
|
a1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 ∈ ℤ ) ) |
| 3 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 4 |
|
peano2zm |
⊢ ( 𝑁 ∈ ℤ → ( 𝑁 − 1 ) ∈ ℤ ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 1 ) ∈ ℤ ) |
| 6 |
5
|
a1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑁 − 1 ) ∈ ℤ ) ) |
| 7 |
|
df-ne |
⊢ ( 𝑁 ≠ 𝑀 ↔ ¬ 𝑁 = 𝑀 ) |
| 8 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
| 9 |
1
|
zred |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℝ ) |
| 10 |
|
eluzelre |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℝ ) |
| 11 |
9 10
|
ltlend |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) ) ) |
| 12 |
11
|
biimprd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≠ 𝑀 ) → 𝑀 < 𝑁 ) ) |
| 13 |
8 12
|
mpand |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 ≠ 𝑀 → 𝑀 < 𝑁 ) ) |
| 14 |
7 13
|
biimtrrid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 < 𝑁 ) ) |
| 15 |
|
zltlem1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 16 |
1 3 15
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 < 𝑁 ↔ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 17 |
14 16
|
sylibd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 18 |
2 6 17
|
3jcad |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) ) |
| 19 |
|
eluz2 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑁 − 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑁 − 1 ) ) ) |
| 20 |
18 19
|
imbitrrdi |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ¬ 𝑁 = 𝑀 → ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
| 21 |
20
|
orrd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |