Metamath Proof Explorer


Theorem uzn0

Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014)

Ref Expression
Assertion uzn0 ( 𝑀 ∈ ran ℤ𝑀 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 uzf : ℤ ⟶ 𝒫 ℤ
2 ffn ( ℤ : ℤ ⟶ 𝒫 ℤ → ℤ Fn ℤ )
3 fvelrnb ( ℤ Fn ℤ → ( 𝑀 ∈ ran ℤ ↔ ∃ 𝑘 ∈ ℤ ( ℤ𝑘 ) = 𝑀 ) )
4 1 2 3 mp2b ( 𝑀 ∈ ran ℤ ↔ ∃ 𝑘 ∈ ℤ ( ℤ𝑘 ) = 𝑀 )
5 uzid ( 𝑘 ∈ ℤ → 𝑘 ∈ ( ℤ𝑘 ) )
6 5 ne0d ( 𝑘 ∈ ℤ → ( ℤ𝑘 ) ≠ ∅ )
7 neeq1 ( ( ℤ𝑘 ) = 𝑀 → ( ( ℤ𝑘 ) ≠ ∅ ↔ 𝑀 ≠ ∅ ) )
8 6 7 syl5ibcom ( 𝑘 ∈ ℤ → ( ( ℤ𝑘 ) = 𝑀𝑀 ≠ ∅ ) )
9 8 rexlimiv ( ∃ 𝑘 ∈ ℤ ( ℤ𝑘 ) = 𝑀𝑀 ≠ ∅ )
10 4 9 sylbi ( 𝑀 ∈ ran ℤ𝑀 ≠ ∅ )