Metamath Proof Explorer


Theorem uzn0bi

Description: The upper integers function needs to be applied to an integer, in order to return a nonempty set. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzn0bi ( ( ℤ𝑀 ) ≠ ∅ ↔ 𝑀 ∈ ℤ )

Proof

Step Hyp Ref Expression
1 uz0 ( ¬ 𝑀 ∈ ℤ → ( ℤ𝑀 ) = ∅ )
2 1 adantl ( ( ( ℤ𝑀 ) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ ) → ( ℤ𝑀 ) = ∅ )
3 neneq ( ( ℤ𝑀 ) ≠ ∅ → ¬ ( ℤ𝑀 ) = ∅ )
4 3 adantr ( ( ( ℤ𝑀 ) ≠ ∅ ∧ ¬ 𝑀 ∈ ℤ ) → ¬ ( ℤ𝑀 ) = ∅ )
5 2 4 condan ( ( ℤ𝑀 ) ≠ ∅ → 𝑀 ∈ ℤ )
6 id ( 𝑀 ∈ ℤ → 𝑀 ∈ ℤ )
7 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
8 6 7 uzn0d ( 𝑀 ∈ ℤ → ( ℤ𝑀 ) ≠ ∅ )
9 5 8 impbii ( ( ℤ𝑀 ) ≠ ∅ ↔ 𝑀 ∈ ℤ )