Metamath Proof Explorer


Theorem uzn0d

Description: The upper integers are all nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzn0d.1 ( 𝜑𝑀 ∈ ℤ )
uzn0d.2 𝑍 = ( ℤ𝑀 )
Assertion uzn0d ( 𝜑𝑍 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 uzn0d.1 ( 𝜑𝑀 ∈ ℤ )
2 uzn0d.2 𝑍 = ( ℤ𝑀 )
3 1 2 uzidd2 ( 𝜑𝑀𝑍 )
4 3 ne0d ( 𝜑𝑍 ≠ ∅ )