| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
| 2 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
| 3 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
| 4 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 5 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 6 |
|
leneg |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 7 |
4 5 6
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 8 |
2 3 7
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ≤ 𝑁 ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 9 |
1 8
|
mpbid |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → - 𝑁 ≤ - 𝑀 ) |
| 10 |
|
znegcl |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) |
| 11 |
|
znegcl |
⊢ ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ ) |
| 12 |
|
eluz |
⊢ ( ( - 𝑁 ∈ ℤ ∧ - 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 13 |
10 11 12
|
syl2an |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 14 |
3 2 13
|
syl2anc |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) ) |
| 15 |
9 14
|
mpbird |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → - 𝑀 ∈ ( ℤ≥ ‘ - 𝑁 ) ) |