Metamath Proof Explorer


Theorem uzneg

Description: Contraposition law for upper integers. (Contributed by NM, 28-Nov-2005)

Ref Expression
Assertion uzneg ( 𝑁 ∈ ( ℤ𝑀 ) → - 𝑀 ∈ ( ℤ ‘ - 𝑁 ) )

Proof

Step Hyp Ref Expression
1 eluzle ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀𝑁 )
2 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
3 eluzelz ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ℤ )
4 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
5 zre ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ )
6 leneg ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → ( 𝑀𝑁 ↔ - 𝑁 ≤ - 𝑀 ) )
7 4 5 6 syl2an ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ↔ - 𝑁 ≤ - 𝑀 ) )
8 2 3 7 syl2anc ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑀𝑁 ↔ - 𝑁 ≤ - 𝑀 ) )
9 1 8 mpbid ( 𝑁 ∈ ( ℤ𝑀 ) → - 𝑁 ≤ - 𝑀 )
10 znegcl ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ )
11 znegcl ( 𝑀 ∈ ℤ → - 𝑀 ∈ ℤ )
12 eluz ( ( - 𝑁 ∈ ℤ ∧ - 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) )
13 10 11 12 syl2an ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( - 𝑀 ∈ ( ℤ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) )
14 3 2 13 syl2anc ( 𝑁 ∈ ( ℤ𝑀 ) → ( - 𝑀 ∈ ( ℤ ‘ - 𝑁 ) ↔ - 𝑁 ≤ - 𝑀 ) )
15 9 14 mpbird ( 𝑁 ∈ ( ℤ𝑀 ) → - 𝑀 ∈ ( ℤ ‘ - 𝑁 ) )