Metamath Proof Explorer


Theorem uznn0sub

Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005)

Ref Expression
Assertion uznn0sub ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁𝑀 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 eluz2 ( 𝑁 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) )
2 znn0sub ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀𝑁 ↔ ( 𝑁𝑀 ) ∈ ℕ0 ) )
3 2 biimp3a ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁 ) → ( 𝑁𝑀 ) ∈ ℕ0 )
4 1 3 sylbi ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝑁𝑀 ) ∈ ℕ0 )