Description: The nonnegative difference of integers is a nonnegative integer. (Contributed by NM, 4-Sep-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | uznn0sub | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) ) | |
2 | znn0sub | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ≤ 𝑁 ↔ ( 𝑁 − 𝑀 ) ∈ ℕ0 ) ) | |
3 | 2 | biimp3a | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |
4 | 1 3 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 − 𝑀 ) ∈ ℕ0 ) |