Step |
Hyp |
Ref |
Expression |
1 |
|
uzm1 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
2 |
|
eluzp1p1 |
⊢ ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) |
3 |
|
eluzelcn |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℂ ) |
4 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
5 |
|
npcan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
6 |
3 4 5
|
sylancl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
7 |
6
|
eleq1d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑁 − 1 ) + 1 ) ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
8 |
2 7
|
syl5ib |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |
9 |
8
|
orim2d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑁 = 𝑀 ∨ ( 𝑁 − 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) ) |
10 |
1 9
|
mpd |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑁 = 𝑀 ∨ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) ) |