Metamath Proof Explorer


Theorem uzrdg0i

Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω )
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω )
uzrdg.3 𝑆 = ran 𝑅
Assertion uzrdg0i ( 𝑆𝐶 ) = 𝐴

Proof

Step Hyp Ref Expression
1 om2uz.1 𝐶 ∈ ℤ
2 om2uz.2 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω )
3 uzrdg.1 𝐴 ∈ V
4 uzrdg.2 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω )
5 uzrdg.3 𝑆 = ran 𝑅
6 1 2 3 4 5 uzrdgfni 𝑆 Fn ( ℤ𝐶 )
7 fnfun ( 𝑆 Fn ( ℤ𝐶 ) → Fun 𝑆 )
8 6 7 ax-mp Fun 𝑆
9 4 fveq1i ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ )
10 opex 𝐶 , 𝐴 ⟩ ∈ V
11 fr0g ( ⟨ 𝐶 , 𝐴 ⟩ ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴 ⟩ )
12 10 11 ax-mp ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) ‘ ∅ ) = ⟨ 𝐶 , 𝐴
13 9 12 eqtri ( 𝑅 ‘ ∅ ) = ⟨ 𝐶 , 𝐴
14 frfnom ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω
15 4 fneq1i ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ ⟨ ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) ⟩ ) , ⟨ 𝐶 , 𝐴 ⟩ ) ↾ ω ) Fn ω )
16 14 15 mpbir 𝑅 Fn ω
17 peano1 ∅ ∈ ω
18 fnfvelrn ( ( 𝑅 Fn ω ∧ ∅ ∈ ω ) → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 )
19 16 17 18 mp2an ( 𝑅 ‘ ∅ ) ∈ ran 𝑅
20 13 19 eqeltrri 𝐶 , 𝐴 ⟩ ∈ ran 𝑅
21 20 5 eleqtrri 𝐶 , 𝐴 ⟩ ∈ 𝑆
22 funopfv ( Fun 𝑆 → ( ⟨ 𝐶 , 𝐴 ⟩ ∈ 𝑆 → ( 𝑆𝐶 ) = 𝐴 ) )
23 8 21 22 mp2 ( 𝑆𝐶 ) = 𝐴