| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
|
uzrdg.1 |
⊢ 𝐴 ∈ V |
| 4 |
|
uzrdg.2 |
⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) |
| 5 |
|
uzrdg.3 |
⊢ 𝑆 = ran 𝑅 |
| 6 |
1 2 3 4 5
|
uzrdgfni |
⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |
| 7 |
|
fnfun |
⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) → Fun 𝑆 ) |
| 8 |
6 7
|
ax-mp |
⊢ Fun 𝑆 |
| 9 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) |
| 10 |
|
opex |
⊢ 〈 𝐶 , 𝐴 〉 ∈ V |
| 11 |
|
fr0g |
⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) |
| 12 |
10 11
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 13 |
9 12
|
eqtri |
⊢ ( 𝑅 ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
| 14 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω |
| 15 |
4
|
fneq1i |
⊢ ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) |
| 16 |
14 15
|
mpbir |
⊢ 𝑅 Fn ω |
| 17 |
|
peano1 |
⊢ ∅ ∈ ω |
| 18 |
|
fnfvelrn |
⊢ ( ( 𝑅 Fn ω ∧ ∅ ∈ ω ) → ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 ) |
| 19 |
16 17 18
|
mp2an |
⊢ ( 𝑅 ‘ ∅ ) ∈ ran 𝑅 |
| 20 |
13 19
|
eqeltrri |
⊢ 〈 𝐶 , 𝐴 〉 ∈ ran 𝑅 |
| 21 |
20 5
|
eleqtrri |
⊢ 〈 𝐶 , 𝐴 〉 ∈ 𝑆 |
| 22 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 𝐶 , 𝐴 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐶 ) = 𝐴 ) ) |
| 23 |
8 21 22
|
mp2 |
⊢ ( 𝑆 ‘ 𝐶 ) = 𝐴 |