| Step |
Hyp |
Ref |
Expression |
| 1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
| 2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
| 3 |
|
uzrdg.1 |
⊢ 𝐴 ∈ V |
| 4 |
|
uzrdg.2 |
⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) |
| 5 |
|
uzrdg.3 |
⊢ 𝑆 = ran 𝑅 |
| 6 |
5
|
eleq2i |
⊢ ( 𝑧 ∈ 𝑆 ↔ 𝑧 ∈ ran 𝑅 ) |
| 7 |
|
frfnom |
⊢ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω |
| 8 |
4
|
fneq1i |
⊢ ( 𝑅 Fn ω ↔ ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) Fn ω ) |
| 9 |
7 8
|
mpbir |
⊢ 𝑅 Fn ω |
| 10 |
|
fvelrnb |
⊢ ( 𝑅 Fn ω → ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 𝑧 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) |
| 12 |
6 11
|
bitri |
⊢ ( 𝑧 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 ) |
| 13 |
1 2 3 4
|
om2uzrdg |
⊢ ( 𝑤 ∈ ω → ( 𝑅 ‘ 𝑤 ) = 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ) |
| 14 |
1 2
|
om2uzuzi |
⊢ ( 𝑤 ∈ ω → ( 𝐺 ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
| 15 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V |
| 16 |
|
opelxpi |
⊢ ( ( ( 𝐺 ‘ 𝑤 ) ∈ ( ℤ≥ ‘ 𝐶 ) ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ∈ V ) → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 17 |
14 15 16
|
sylancl |
⊢ ( 𝑤 ∈ ω → 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 18 |
13 17
|
eqeltrd |
⊢ ( 𝑤 ∈ ω → ( 𝑅 ‘ 𝑤 ) ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 19 |
|
eleq1 |
⊢ ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → ( ( 𝑅 ‘ 𝑤 ) ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ↔ 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) ) |
| 20 |
18 19
|
syl5ibcom |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) ) |
| 21 |
20
|
rexlimiv |
⊢ ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 𝑧 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 22 |
12 21
|
sylbi |
⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ∈ ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 23 |
22
|
ssriv |
⊢ 𝑆 ⊆ ( ( ℤ≥ ‘ 𝐶 ) × V ) |
| 24 |
|
xpss |
⊢ ( ( ℤ≥ ‘ 𝐶 ) × V ) ⊆ ( V × V ) |
| 25 |
23 24
|
sstri |
⊢ 𝑆 ⊆ ( V × V ) |
| 26 |
|
df-rel |
⊢ ( Rel 𝑆 ↔ 𝑆 ⊆ ( V × V ) ) |
| 27 |
25 26
|
mpbir |
⊢ Rel 𝑆 |
| 28 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ∈ V |
| 29 |
|
eqeq2 |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( 𝑧 = 𝑤 ↔ 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) |
| 30 |
29
|
imbi2d |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
| 31 |
30
|
albidv |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) → ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ↔ ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) ) ) |
| 32 |
28 31
|
spcev |
⊢ ( ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) → ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) |
| 33 |
5
|
eleq2i |
⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ) |
| 34 |
|
fvelrnb |
⊢ ( 𝑅 Fn ω → ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) ) |
| 35 |
9 34
|
ax-mp |
⊢ ( 〈 𝑣 , 𝑧 〉 ∈ ran 𝑅 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) |
| 36 |
33 35
|
bitri |
⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 ↔ ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) |
| 37 |
13
|
eqeq1d |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ↔ 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 ) ) |
| 38 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑤 ) ∈ V |
| 39 |
38 15
|
opth1 |
⊢ ( 〈 ( 𝐺 ‘ 𝑤 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) 〉 = 〈 𝑣 , 𝑧 〉 → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) |
| 40 |
37 39
|
biimtrdi |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 𝐺 ‘ 𝑤 ) = 𝑣 ) ) |
| 41 |
1 2
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
| 42 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝑤 ∈ ω ) → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
| 43 |
41 42
|
mpan |
⊢ ( 𝑤 ∈ ω → ( ( 𝐺 ‘ 𝑤 ) = 𝑣 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
| 44 |
40 43
|
syld |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 ) ) |
| 45 |
|
2fveq3 |
⊢ ( ( ◡ 𝐺 ‘ 𝑣 ) = 𝑤 → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 46 |
44 45
|
syl6 |
⊢ ( 𝑤 ∈ ω → ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) ) |
| 47 |
46
|
imp |
⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) ) |
| 48 |
|
vex |
⊢ 𝑣 ∈ V |
| 49 |
|
vex |
⊢ 𝑧 ∈ V |
| 50 |
48 49
|
op2ndd |
⊢ ( ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
| 51 |
50
|
adantl |
⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → ( 2nd ‘ ( 𝑅 ‘ 𝑤 ) ) = 𝑧 ) |
| 52 |
47 51
|
eqtr2d |
⊢ ( ( 𝑤 ∈ ω ∧ ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 ) → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 53 |
52
|
rexlimiva |
⊢ ( ∃ 𝑤 ∈ ω ( 𝑅 ‘ 𝑤 ) = 〈 𝑣 , 𝑧 〉 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 54 |
36 53
|
sylbi |
⊢ ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) ) |
| 55 |
32 54
|
mpg |
⊢ ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) |
| 56 |
55
|
ax-gen |
⊢ ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) |
| 57 |
|
dffun5 |
⊢ ( Fun 𝑆 ↔ ( Rel 𝑆 ∧ ∀ 𝑣 ∃ 𝑤 ∀ 𝑧 ( 〈 𝑣 , 𝑧 〉 ∈ 𝑆 → 𝑧 = 𝑤 ) ) ) |
| 58 |
27 56 57
|
mpbir2an |
⊢ Fun 𝑆 |
| 59 |
|
dmss |
⊢ ( 𝑆 ⊆ ( ( ℤ≥ ‘ 𝐶 ) × V ) → dom 𝑆 ⊆ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) ) |
| 60 |
23 59
|
ax-mp |
⊢ dom 𝑆 ⊆ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) |
| 61 |
|
dmxpss |
⊢ dom ( ( ℤ≥ ‘ 𝐶 ) × V ) ⊆ ( ℤ≥ ‘ 𝐶 ) |
| 62 |
60 61
|
sstri |
⊢ dom 𝑆 ⊆ ( ℤ≥ ‘ 𝐶 ) |
| 63 |
1 2 3 4
|
uzrdglem |
⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ ran 𝑅 ) |
| 64 |
63 5
|
eleqtrrdi |
⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 ) |
| 65 |
48 28
|
opeldm |
⊢ ( 〈 𝑣 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝑣 ) ) ) 〉 ∈ 𝑆 → 𝑣 ∈ dom 𝑆 ) |
| 66 |
64 65
|
syl |
⊢ ( 𝑣 ∈ ( ℤ≥ ‘ 𝐶 ) → 𝑣 ∈ dom 𝑆 ) |
| 67 |
66
|
ssriv |
⊢ ( ℤ≥ ‘ 𝐶 ) ⊆ dom 𝑆 |
| 68 |
62 67
|
eqssi |
⊢ dom 𝑆 = ( ℤ≥ ‘ 𝐶 ) |
| 69 |
|
df-fn |
⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) ↔ ( Fun 𝑆 ∧ dom 𝑆 = ( ℤ≥ ‘ 𝐶 ) ) ) |
| 70 |
58 68 69
|
mpbir2an |
⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |