Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
3 |
|
uzrdg.1 |
⊢ 𝐴 ∈ V |
4 |
|
uzrdg.2 |
⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) |
5 |
|
uzrdg.3 |
⊢ 𝑆 = ran 𝑅 |
6 |
1 2 3 4 5
|
uzrdgfni |
⊢ 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) |
7 |
|
fnfun |
⊢ ( 𝑆 Fn ( ℤ≥ ‘ 𝐶 ) → Fun 𝑆 ) |
8 |
6 7
|
ax-mp |
⊢ Fun 𝑆 |
9 |
|
peano2uz |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) ) |
10 |
1 2 3 4
|
uzrdglem |
⊢ ( ( 𝐵 + 1 ) ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ ran 𝑅 ) |
11 |
9 10
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ ran 𝑅 ) |
12 |
11 5
|
eleqtrrdi |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ 𝑆 ) |
13 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 ( 𝐵 + 1 ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) ) ) |
14 |
8 12 13
|
mpsyl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) ) |
15 |
1 2
|
om2uzf1oi |
⊢ 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) |
16 |
|
f1ocnvdm |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
17 |
15 16
|
mpan |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
18 |
|
peano2 |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
19 |
17 18
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) |
20 |
1 2
|
om2uzsuci |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) |
21 |
17 20
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) |
22 |
|
f1ocnvfv2 |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
23 |
15 22
|
mpan |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 𝐵 ) |
24 |
23
|
oveq1d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) = ( 𝐵 + 1 ) ) |
25 |
21 24
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) ) |
26 |
|
f1ocnvfv |
⊢ ( ( 𝐺 : ω –1-1-onto→ ( ℤ≥ ‘ 𝐶 ) ∧ suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω ) → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
27 |
15 26
|
mpan |
⊢ ( suc ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝐺 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( 𝐵 + 1 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
28 |
19 25 27
|
sylc |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) = suc ( ◡ 𝐺 ‘ 𝐵 ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) = ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
30 |
29
|
fveq2d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ ( 𝐵 + 1 ) ) ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
31 |
14 30
|
eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
32 |
|
frsuc |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
33 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) |
34 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) |
35 |
34
|
fveq2i |
⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) |
36 |
32 33 35
|
3eqtr4g |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
37 |
1 2 3 4
|
om2uzrdg |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
38 |
37
|
fveq2d |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) ) |
39 |
|
df-ov |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ) |
40 |
38 39
|
eqtr4di |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
41 |
36 40
|
eqtrd |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
42 |
|
fvex |
⊢ ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V |
43 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V |
44 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 + 1 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ) |
45 |
|
oveq1 |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → ( 𝑧 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) ) |
46 |
44 45
|
opeq12d |
⊢ ( 𝑧 = ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) → 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 ) |
47 |
|
oveq2 |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
48 |
47
|
opeq2d |
⊢ ( 𝑤 = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) → 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 𝑤 ) 〉 = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
49 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 + 1 ) = ( 𝑧 + 1 ) ) |
50 |
|
oveq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑦 ) ) |
51 |
49 50
|
opeq12d |
⊢ ( 𝑥 = 𝑧 → 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑦 ) 〉 ) |
52 |
|
oveq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐹 𝑦 ) = ( 𝑧 𝐹 𝑤 ) ) |
53 |
52
|
opeq2d |
⊢ ( 𝑦 = 𝑤 → 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑦 ) 〉 = 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
54 |
51 53
|
cbvmpov |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑧 ∈ V , 𝑤 ∈ V ↦ 〈 ( 𝑧 + 1 ) , ( 𝑧 𝐹 𝑤 ) 〉 ) |
55 |
|
opex |
⊢ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ∈ V |
56 |
46 48 54 55
|
ovmpo |
⊢ ( ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ∈ V ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
57 |
42 43 56
|
mp2an |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 |
58 |
41 57
|
eqtrdi |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) = 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) |
59 |
58
|
fveq2d |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) ) |
60 |
|
ovex |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) ∈ V |
61 |
|
ovex |
⊢ ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ∈ V |
62 |
60 61
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) + 1 ) , ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) 〉 ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
63 |
59 62
|
eqtrdi |
⊢ ( ( ◡ 𝐺 ‘ 𝐵 ) ∈ ω → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
64 |
17 63
|
syl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ suc ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
65 |
1 2 3 4
|
uzrdglem |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ ran 𝑅 ) |
66 |
65 5
|
eleqtrrdi |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 ) |
67 |
|
funopfv |
⊢ ( Fun 𝑆 → ( 〈 𝐵 , ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) 〉 ∈ 𝑆 → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) ) |
68 |
8 66 67
|
mpsyl |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ 𝐵 ) = ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) |
69 |
68
|
eqcomd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) = ( 𝑆 ‘ 𝐵 ) ) |
70 |
23 69
|
oveq12d |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( ( 𝐺 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ ( ◡ 𝐺 ‘ 𝐵 ) ) ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |
71 |
31 64 70
|
3eqtrd |
⊢ ( 𝐵 ∈ ( ℤ≥ ‘ 𝐶 ) → ( 𝑆 ‘ ( 𝐵 + 1 ) ) = ( 𝐵 𝐹 ( 𝑆 ‘ 𝐵 ) ) ) |