| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uzrdgxfr.1 | ⊢ 𝐺  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  𝐴 )  ↾  ω ) | 
						
							| 2 |  | uzrdgxfr.2 | ⊢ 𝐻  =  ( rec ( ( 𝑥  ∈  V  ↦  ( 𝑥  +  1 ) ) ,  𝐵 )  ↾  ω ) | 
						
							| 3 |  | uzrdgxfr.3 | ⊢ 𝐴  ∈  ℤ | 
						
							| 4 |  | uzrdgxfr.4 | ⊢ 𝐵  ∈  ℤ | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ ∅ ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑦  =  ∅  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ ∅ ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐻 ‘ ∅ )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 8 | 5 7 | eqeq12d | ⊢ ( 𝑦  =  ∅  →  ( ( 𝐺 ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  ↔  ( 𝐺 ‘ ∅ )  =  ( ( 𝐻 ‘ ∅ )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑘 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑦  =  𝑘  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑘 ) ) | 
						
							| 11 | 10 | oveq1d | ⊢ ( 𝑦  =  𝑘  →  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 12 | 9 11 | eqeq12d | ⊢ ( 𝑦  =  𝑘  →  ( ( 𝐺 ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  ↔  ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑘  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ suc  𝑘 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑦  =  suc  𝑘  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ suc  𝑘 ) ) | 
						
							| 15 | 14 | oveq1d | ⊢ ( 𝑦  =  suc  𝑘  →  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 16 | 13 15 | eqeq12d | ⊢ ( 𝑦  =  suc  𝑘  →  ( ( 𝐺 ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  ↔  ( 𝐺 ‘ suc  𝑘 )  =  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑦  =  𝑁  →  ( 𝐺 ‘ 𝑦 )  =  ( 𝐺 ‘ 𝑁 ) ) | 
						
							| 18 |  | fveq2 | ⊢ ( 𝑦  =  𝑁  →  ( 𝐻 ‘ 𝑦 )  =  ( 𝐻 ‘ 𝑁 ) ) | 
						
							| 19 | 18 | oveq1d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( 𝐻 ‘ 𝑁 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 20 | 17 19 | eqeq12d | ⊢ ( 𝑦  =  𝑁  →  ( ( 𝐺 ‘ 𝑦 )  =  ( ( 𝐻 ‘ 𝑦 )  +  ( 𝐴  −  𝐵 ) )  ↔  ( 𝐺 ‘ 𝑁 )  =  ( ( 𝐻 ‘ 𝑁 )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 21 |  | zcn | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℂ ) | 
						
							| 22 | 4 21 | ax-mp | ⊢ 𝐵  ∈  ℂ | 
						
							| 23 |  | zcn | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 3 23 | ax-mp | ⊢ 𝐴  ∈  ℂ | 
						
							| 25 | 22 24 | pncan3i | ⊢ ( 𝐵  +  ( 𝐴  −  𝐵 ) )  =  𝐴 | 
						
							| 26 | 4 2 | om2uz0i | ⊢ ( 𝐻 ‘ ∅ )  =  𝐵 | 
						
							| 27 | 26 | oveq1i | ⊢ ( ( 𝐻 ‘ ∅ )  +  ( 𝐴  −  𝐵 ) )  =  ( 𝐵  +  ( 𝐴  −  𝐵 ) ) | 
						
							| 28 | 3 1 | om2uz0i | ⊢ ( 𝐺 ‘ ∅ )  =  𝐴 | 
						
							| 29 | 25 27 28 | 3eqtr4ri | ⊢ ( 𝐺 ‘ ∅ )  =  ( ( 𝐻 ‘ ∅ )  +  ( 𝐴  −  𝐵 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  →  ( ( 𝐺 ‘ 𝑘 )  +  1 )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) | 
						
							| 31 | 3 1 | om2uzsuci | ⊢ ( 𝑘  ∈  ω  →  ( 𝐺 ‘ suc  𝑘 )  =  ( ( 𝐺 ‘ 𝑘 )  +  1 ) ) | 
						
							| 32 | 4 2 | om2uzsuci | ⊢ ( 𝑘  ∈  ω  →  ( 𝐻 ‘ suc  𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  +  1 ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝑘  ∈  ω  →  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  1 )  +  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 34 | 4 2 | om2uzuzi | ⊢ ( 𝑘  ∈  ω  →  ( 𝐻 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐵 ) ) | 
						
							| 35 |  | eluzelz | ⊢ ( ( 𝐻 ‘ 𝑘 )  ∈  ( ℤ≥ ‘ 𝐵 )  →  ( 𝐻 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑘  ∈  ω  →  ( 𝐻 ‘ 𝑘 )  ∈  ℤ ) | 
						
							| 37 | 36 | zcnd | ⊢ ( 𝑘  ∈  ω  →  ( 𝐻 ‘ 𝑘 )  ∈  ℂ ) | 
						
							| 38 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 39 | 24 22 | subcli | ⊢ ( 𝐴  −  𝐵 )  ∈  ℂ | 
						
							| 40 |  | add32 | ⊢ ( ( ( 𝐻 ‘ 𝑘 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  ( 𝐴  −  𝐵 )  ∈  ℂ )  →  ( ( ( 𝐻 ‘ 𝑘 )  +  1 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) | 
						
							| 41 | 38 39 40 | mp3an23 | ⊢ ( ( 𝐻 ‘ 𝑘 )  ∈  ℂ  →  ( ( ( 𝐻 ‘ 𝑘 )  +  1 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) | 
						
							| 42 | 37 41 | syl | ⊢ ( 𝑘  ∈  ω  →  ( ( ( 𝐻 ‘ 𝑘 )  +  1 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) | 
						
							| 43 | 33 42 | eqtrd | ⊢ ( 𝑘  ∈  ω  →  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) | 
						
							| 44 | 31 43 | eqeq12d | ⊢ ( 𝑘  ∈  ω  →  ( ( 𝐺 ‘ suc  𝑘 )  =  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) )  ↔  ( ( 𝐺 ‘ 𝑘 )  +  1 )  =  ( ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  +  1 ) ) ) | 
						
							| 45 | 30 44 | imbitrrid | ⊢ ( 𝑘  ∈  ω  →  ( ( 𝐺 ‘ 𝑘 )  =  ( ( 𝐻 ‘ 𝑘 )  +  ( 𝐴  −  𝐵 ) )  →  ( 𝐺 ‘ suc  𝑘 )  =  ( ( 𝐻 ‘ suc  𝑘 )  +  ( 𝐴  −  𝐵 ) ) ) ) | 
						
							| 46 | 8 12 16 20 29 45 | finds | ⊢ ( 𝑁  ∈  ω  →  ( 𝐺 ‘ 𝑁 )  =  ( ( 𝐻 ‘ 𝑁 )  +  ( 𝐴  −  𝐵 ) ) ) |