Metamath Proof Explorer


Theorem uzred

Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzred.1 𝑍 = ( ℤ𝑀 )
uzred.2 ( 𝜑𝐴𝑍 )
Assertion uzred ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 uzred.1 𝑍 = ( ℤ𝑀 )
2 uzred.2 ( 𝜑𝐴𝑍 )
3 zssre ℤ ⊆ ℝ
4 1 2 eluzelz2d ( 𝜑𝐴 ∈ ℤ )
5 3 4 sselid ( 𝜑𝐴 ∈ ℝ )