Metamath Proof Explorer
Description: An upper integer is a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
uzred.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
|
uzred.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |
|
Assertion |
uzred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzred.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
uzred.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |
3 |
|
zssre |
⊢ ℤ ⊆ ℝ |
4 |
1 2
|
eluzelz2d |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
5 |
3 4
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |