Step |
Hyp |
Ref |
Expression |
1 |
|
uzfbas.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
zex |
⊢ ℤ ∈ V |
3 |
2
|
pwex |
⊢ 𝒫 ℤ ∈ V |
4 |
|
uzf |
⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ |
5 |
|
frn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ran ℤ≥ ⊆ 𝒫 ℤ ) |
6 |
4 5
|
ax-mp |
⊢ ran ℤ≥ ⊆ 𝒫 ℤ |
7 |
3 6
|
ssexi |
⊢ ran ℤ≥ ∈ V |
8 |
1
|
fvexi |
⊢ 𝑍 ∈ V |
9 |
|
restval |
⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ) → ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ) |
10 |
7 8 9
|
mp2an |
⊢ ( ran ℤ≥ ↾t 𝑍 ) = ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) |
11 |
1
|
ineq2i |
⊢ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) |
12 |
|
uzin |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
13 |
12
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ ( ℤ≥ ‘ 𝑀 ) ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
14 |
11 13
|
syl5eq |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) = ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
15 |
|
ffn |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) |
16 |
4 15
|
ax-mp |
⊢ ℤ≥ Fn ℤ |
17 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
18 |
1 17
|
eqsstri |
⊢ 𝑍 ⊆ ℤ |
19 |
|
ifcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ ) |
20 |
|
uzid |
⊢ ( if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ℤ → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ) |
22 |
21 14
|
eleqtrrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) |
23 |
22
|
elin2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) |
24 |
|
fnfvima |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑍 ⊆ ℤ ∧ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ∈ 𝑍 ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) |
25 |
16 18 23 24
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ℤ≥ ‘ if ( 𝑦 ≤ 𝑀 , 𝑀 , 𝑦 ) ) ∈ ( ℤ≥ “ 𝑍 ) ) |
26 |
14 25
|
eqeltrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
27 |
26
|
ralrimiva |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
28 |
|
ineq1 |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( 𝑥 ∩ 𝑍 ) = ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ) |
29 |
28
|
eleq1d |
⊢ ( 𝑥 = ( ℤ≥ ‘ 𝑦 ) → ( ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
30 |
29
|
ralrn |
⊢ ( ℤ≥ Fn ℤ → ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) ) |
31 |
16 30
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ∀ 𝑦 ∈ ℤ ( ( ℤ≥ ‘ 𝑦 ) ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
32 |
27 31
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ) |
33 |
|
eqid |
⊢ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) = ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) |
34 |
33
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ran ℤ≥ ( 𝑥 ∩ 𝑍 ) ∈ ( ℤ≥ “ 𝑍 ) ↔ ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
35 |
32 34
|
sylib |
⊢ ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) : ran ℤ≥ ⟶ ( ℤ≥ “ 𝑍 ) ) |
36 |
35
|
frnd |
⊢ ( 𝑀 ∈ ℤ → ran ( 𝑥 ∈ ran ℤ≥ ↦ ( 𝑥 ∩ 𝑍 ) ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
37 |
10 36
|
eqsstrid |
⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) ⊆ ( ℤ≥ “ 𝑍 ) ) |
38 |
1
|
uztrn2 |
⊢ ( ( 𝑥 ∈ 𝑍 ∧ 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) ) → 𝑦 ∈ 𝑍 ) |
39 |
38
|
ex |
⊢ ( 𝑥 ∈ 𝑍 → ( 𝑦 ∈ ( ℤ≥ ‘ 𝑥 ) → 𝑦 ∈ 𝑍 ) ) |
40 |
39
|
ssrdv |
⊢ ( 𝑥 ∈ 𝑍 → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
41 |
40
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ) |
42 |
|
df-ss |
⊢ ( ( ℤ≥ ‘ 𝑥 ) ⊆ 𝑍 ↔ ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) |
43 |
41 42
|
sylib |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) = ( ℤ≥ ‘ 𝑥 ) ) |
44 |
18
|
sseli |
⊢ ( 𝑥 ∈ 𝑍 → 𝑥 ∈ ℤ ) |
45 |
44
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → 𝑥 ∈ ℤ ) |
46 |
|
fnfvelrn |
⊢ ( ( ℤ≥ Fn ℤ ∧ 𝑥 ∈ ℤ ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) |
47 |
16 45 46
|
sylancr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) |
48 |
|
elrestr |
⊢ ( ( ran ℤ≥ ∈ V ∧ 𝑍 ∈ V ∧ ( ℤ≥ ‘ 𝑥 ) ∈ ran ℤ≥ ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
49 |
7 8 47 48
|
mp3an12i |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ( ℤ≥ ‘ 𝑥 ) ∩ 𝑍 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
50 |
43 49
|
eqeltrrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑥 ∈ 𝑍 ) → ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
51 |
50
|
ralrimiva |
⊢ ( 𝑀 ∈ ℤ → ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
52 |
|
ffun |
⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → Fun ℤ≥ ) |
53 |
4 52
|
ax-mp |
⊢ Fun ℤ≥ |
54 |
4
|
fdmi |
⊢ dom ℤ≥ = ℤ |
55 |
18 54
|
sseqtrri |
⊢ 𝑍 ⊆ dom ℤ≥ |
56 |
|
funimass4 |
⊢ ( ( Fun ℤ≥ ∧ 𝑍 ⊆ dom ℤ≥ ) → ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) ) |
57 |
53 55 56
|
mp2an |
⊢ ( ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ↔ ∀ 𝑥 ∈ 𝑍 ( ℤ≥ ‘ 𝑥 ) ∈ ( ran ℤ≥ ↾t 𝑍 ) ) |
58 |
51 57
|
sylibr |
⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ “ 𝑍 ) ⊆ ( ran ℤ≥ ↾t 𝑍 ) ) |
59 |
37 58
|
eqssd |
⊢ ( 𝑀 ∈ ℤ → ( ran ℤ≥ ↾t 𝑍 ) = ( ℤ≥ “ 𝑍 ) ) |