Step |
Hyp |
Ref |
Expression |
1 |
|
eluzle |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑁 ) |
2 |
1
|
adantr |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → 𝑀 ≤ 𝑁 ) |
3 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
4 |
|
eluzelz |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ℤ ) |
5 |
3 4
|
jca |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
6 |
|
zletr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) |
7 |
6
|
3expa |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 ≤ 𝑁 ∧ 𝑁 ≤ 𝑘 ) → 𝑀 ≤ 𝑘 ) ) |
9 |
2 8
|
mpand |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑘 ∈ ℤ ) → ( 𝑁 ≤ 𝑘 → 𝑀 ≤ 𝑘 ) ) |
10 |
9
|
imdistanda |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) → ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
11 |
|
eluz1 |
⊢ ( 𝑁 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) ) |
12 |
4 11
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑁 ≤ 𝑘 ) ) ) |
13 |
|
eluz1 |
⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
14 |
3 13
|
syl |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ) ) ) |
15 |
10 12 14
|
3imtr4d |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑘 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
16 |
15
|
ssrdv |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |