Metamath Proof Explorer


Theorem uzsscn2

Description: An upper set of integers is a subset of the complex numbers. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypothesis uzsscn2.1 𝑍 = ( ℤ𝑀 )
Assertion uzsscn2 𝑍 ⊆ ℂ

Proof

Step Hyp Ref Expression
1 uzsscn2.1 𝑍 = ( ℤ𝑀 )
2 uzsscn ( ℤ𝑀 ) ⊆ ℂ
3 1 2 eqsstri 𝑍 ⊆ ℂ