Metamath Proof Explorer


Theorem uzssd2

Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses uzssd2.1 𝑍 = ( ℤ𝑀 )
uzssd2.2 ( 𝜑𝑁𝑍 )
Assertion uzssd2 ( 𝜑 → ( ℤ𝑁 ) ⊆ 𝑍 )

Proof

Step Hyp Ref Expression
1 uzssd2.1 𝑍 = ( ℤ𝑀 )
2 uzssd2.2 ( 𝜑𝑁𝑍 )
3 2 1 eleqtrdi ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
4 3 uzssd ( 𝜑 → ( ℤ𝑁 ) ⊆ ( ℤ𝑀 ) )
5 4 1 sseqtrrdi ( 𝜑 → ( ℤ𝑁 ) ⊆ 𝑍 )