Metamath Proof Explorer
Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypotheses |
uzssd2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
|
uzssd2.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
|
Assertion |
uzssd2 |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzssd2.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
uzssd2.2 |
⊢ ( 𝜑 → 𝑁 ∈ 𝑍 ) |
3 |
2 1
|
eleqtrdi |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
4 |
3
|
uzssd |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ 𝑀 ) ) |
5 |
4 1
|
sseqtrrdi |
⊢ ( 𝜑 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |