Metamath Proof Explorer
Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)
|
|
Ref |
Expression |
|
Hypothesis |
uzssd3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
Assertion |
uzssd3 |
⊢ ( 𝑁 ∈ 𝑍 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzssd3.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
id |
⊢ ( 𝑁 ∈ 𝑍 → 𝑁 ∈ 𝑍 ) |
3 |
1 2
|
uzssd2 |
⊢ ( 𝑁 ∈ 𝑍 → ( ℤ≥ ‘ 𝑁 ) ⊆ 𝑍 ) |