Metamath Proof Explorer


Theorem uzssd3

Description: Subset relationship for two sets of upper integers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis uzssd3.1 𝑍 = ( ℤ𝑀 )
Assertion uzssd3 ( 𝑁𝑍 → ( ℤ𝑁 ) ⊆ 𝑍 )

Proof

Step Hyp Ref Expression
1 uzssd3.1 𝑍 = ( ℤ𝑀 )
2 id ( 𝑁𝑍𝑁𝑍 )
3 1 2 uzssd2 ( 𝑁𝑍 → ( ℤ𝑁 ) ⊆ 𝑍 )