Metamath Proof Explorer


Theorem uzssico

Description: Upper integer sets are a subset of the corresponding closed-below, open-above intervals. (Contributed by Thierry Arnoux, 29-Dec-2021)

Ref Expression
Assertion uzssico ( 𝑀 ∈ ℤ → ( ℤ𝑀 ) ⊆ ( 𝑀 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 zssre ℤ ⊆ ℝ
2 1 sseli ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ )
3 2 a1i ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) )
4 3 anim1d ( 𝑀 ∈ ℤ → ( ( 𝑥 ∈ ℤ ∧ 𝑀𝑥 ) → ( 𝑥 ∈ ℝ ∧ 𝑀𝑥 ) ) )
5 eluz1 ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( ℤ𝑀 ) ↔ ( 𝑥 ∈ ℤ ∧ 𝑀𝑥 ) ) )
6 zre ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ )
7 elicopnf ( 𝑀 ∈ ℝ → ( 𝑥 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑀𝑥 ) ) )
8 6 7 syl ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( 𝑀 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 𝑀𝑥 ) ) )
9 4 5 8 3imtr4d ( 𝑀 ∈ ℤ → ( 𝑥 ∈ ( ℤ𝑀 ) → 𝑥 ∈ ( 𝑀 [,) +∞ ) ) )
10 9 ssrdv ( 𝑀 ∈ ℤ → ( ℤ𝑀 ) ⊆ ( 𝑀 [,) +∞ ) )