Metamath Proof Explorer


Theorem uzssre2

Description: An upper set of integers is a subset of the Reals. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypothesis uzssre2.1 𝑍 = ( ℤ𝑀 )
Assertion uzssre2 𝑍 ⊆ ℝ

Proof

Step Hyp Ref Expression
1 uzssre2.1 𝑍 = ( ℤ𝑀 )
2 uzssz ( ℤ𝑀 ) ⊆ ℤ
3 zssre ℤ ⊆ ℝ
4 2 3 sstri ( ℤ𝑀 ) ⊆ ℝ
5 1 4 eqsstri 𝑍 ⊆ ℝ