Metamath Proof Explorer


Theorem uzssz

Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion uzssz ( ℤ𝑀 ) ⊆ ℤ

Proof

Step Hyp Ref Expression
1 uzf : ℤ ⟶ 𝒫 ℤ
2 1 ffvelrni ( 𝑀 ∈ ℤ → ( ℤ𝑀 ) ∈ 𝒫 ℤ )
3 2 elpwid ( 𝑀 ∈ ℤ → ( ℤ𝑀 ) ⊆ ℤ )
4 1 fdmi dom ℤ = ℤ
5 3 4 eleq2s ( 𝑀 ∈ dom ℤ → ( ℤ𝑀 ) ⊆ ℤ )
6 ndmfv ( ¬ 𝑀 ∈ dom ℤ → ( ℤ𝑀 ) = ∅ )
7 0ss ∅ ⊆ ℤ
8 6 7 eqsstrdi ( ¬ 𝑀 ∈ dom ℤ → ( ℤ𝑀 ) ⊆ ℤ )
9 5 8 pm2.61i ( ℤ𝑀 ) ⊆ ℤ