Description: An upper set of integers is a subset of all integers. (Contributed by NM, 2-Sep-2005) (Revised by Mario Carneiro, 3-Nov-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
2 | 1 | ffvelrni | ⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) ∈ 𝒫 ℤ ) |
3 | 2 | elpwid | ⊢ ( 𝑀 ∈ ℤ → ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) |
4 | 1 | fdmi | ⊢ dom ℤ≥ = ℤ |
5 | 3 4 | eleq2s | ⊢ ( 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) |
6 | ndmfv | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) = ∅ ) | |
7 | 0ss | ⊢ ∅ ⊆ ℤ | |
8 | 6 7 | eqsstrdi | ⊢ ( ¬ 𝑀 ∈ dom ℤ≥ → ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) |
9 | 5 8 | pm2.61i | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |