Metamath Proof Explorer


Theorem uzsubfz0

Description: Membership of an integer greater than L decreased by L in a finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 16-Sep-2018)

Ref Expression
Assertion uzsubfz0 ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → ( 𝑁𝐿 ) ∈ ( 0 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → 𝐿 ∈ ℕ0 )
2 eluznn0 ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → 𝑁 ∈ ℕ0 )
3 eluzle ( 𝑁 ∈ ( ℤ𝐿 ) → 𝐿𝑁 )
4 3 adantl ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → 𝐿𝑁 )
5 elfz2nn0 ( 𝐿 ∈ ( 0 ... 𝑁 ) ↔ ( 𝐿 ∈ ℕ0𝑁 ∈ ℕ0𝐿𝑁 ) )
6 1 2 4 5 syl3anbrc ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → 𝐿 ∈ ( 0 ... 𝑁 ) )
7 fznn0sub2 ( 𝐿 ∈ ( 0 ... 𝑁 ) → ( 𝑁𝐿 ) ∈ ( 0 ... 𝑁 ) )
8 6 7 syl ( ( 𝐿 ∈ ℕ0𝑁 ∈ ( ℤ𝐿 ) ) → ( 𝑁𝐿 ) ∈ ( 0 ... 𝑁 ) )