Metamath Proof Explorer


Theorem uzsubsubfz1

Description: Membership of an integer greater than L decreased by ( L - 1 ) in a 1-based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018)

Ref Expression
Assertion uzsubsubfz1 ( ( 𝐿 ∈ ℕ ∧ 𝑁 ∈ ( ℤ𝐿 ) ) → ( 𝑁 − ( 𝐿 − 1 ) ) ∈ ( 1 ... 𝑁 ) )

Proof

Step Hyp Ref Expression
1 elnnuz ( 𝐿 ∈ ℕ ↔ 𝐿 ∈ ( ℤ ‘ 1 ) )
2 uzsubsubfz ( ( 𝐿 ∈ ( ℤ ‘ 1 ) ∧ 𝑁 ∈ ( ℤ𝐿 ) ) → ( 𝑁 − ( 𝐿 − 1 ) ) ∈ ( 1 ... 𝑁 ) )
3 1 2 sylanb ( ( 𝐿 ∈ ℕ ∧ 𝑁 ∈ ( ℤ𝐿 ) ) → ( 𝑁 − ( 𝐿 − 1 ) ) ∈ ( 1 ... 𝑁 ) )