Description: Transitive law for sets of upper integers. (Contributed by Mario Carneiro, 26-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uztrn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝐾 ) | |
| Assertion | uztrn2 | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uztrn2.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝐾 ) | |
| 2 | 1 | eleq2i | ⊢ ( 𝑁 ∈ 𝑍 ↔ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 3 | uztrn | ⊢ ( ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 5 | 2 4 | sylanb | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ 𝐾 ) ) |
| 6 | 5 1 | eleqtrrdi | ⊢ ( ( 𝑁 ∈ 𝑍 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ 𝑍 ) |