Metamath Proof Explorer


Theorem uzuzle35

Description: An integer greater than or equal to 5 is an integer greater than or equal to 3. (Contributed by AV, 15-Nov-2025)

Ref Expression
Assertion uzuzle35 ( 𝐴 ∈ ( ℤ ‘ 5 ) → 𝐴 ∈ ( ℤ ‘ 3 ) )

Proof

Step Hyp Ref Expression
1 5eluz3 5 ∈ ( ℤ ‘ 3 )
2 uzss ( 5 ∈ ( ℤ ‘ 3 ) → ( ℤ ‘ 5 ) ⊆ ( ℤ ‘ 3 ) )
3 1 2 ax-mp ( ℤ ‘ 5 ) ⊆ ( ℤ ‘ 3 )
4 3 sseli ( 𝐴 ∈ ( ℤ ‘ 5 ) → 𝐴 ∈ ( ℤ ‘ 3 ) )