Step |
Hyp |
Ref |
Expression |
1 |
|
breq1 |
⊢ ( ℎ = 𝑀 → ( ℎ ≤ 𝑡 ↔ 𝑀 ≤ 𝑡 ) ) |
2 |
1
|
ralbidv |
⊢ ( ℎ = 𝑀 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) ) |
3 |
2
|
imbi2d |
⊢ ( ℎ = 𝑀 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) ) ) |
4 |
|
breq1 |
⊢ ( ℎ = 𝑚 → ( ℎ ≤ 𝑡 ↔ 𝑚 ≤ 𝑡 ) ) |
5 |
4
|
ralbidv |
⊢ ( ℎ = 𝑚 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) |
6 |
5
|
imbi2d |
⊢ ( ℎ = 𝑚 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) ) |
7 |
|
breq1 |
⊢ ( ℎ = ( 𝑚 + 1 ) → ( ℎ ≤ 𝑡 ↔ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
8 |
7
|
ralbidv |
⊢ ( ℎ = ( 𝑚 + 1 ) → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
9 |
8
|
imbi2d |
⊢ ( ℎ = ( 𝑚 + 1 ) → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
10 |
|
breq1 |
⊢ ( ℎ = 𝑛 → ( ℎ ≤ 𝑡 ↔ 𝑛 ≤ 𝑡 ) ) |
11 |
10
|
ralbidv |
⊢ ( ℎ = 𝑛 → ( ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
12 |
11
|
imbi2d |
⊢ ( ℎ = 𝑛 → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ℎ ≤ 𝑡 ) ↔ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) ) |
13 |
|
ssel |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑡 ∈ 𝑆 → 𝑡 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
14 |
|
eluzle |
⊢ ( 𝑡 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ≤ 𝑡 ) |
15 |
13 14
|
syl6 |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑡 ∈ 𝑆 → 𝑀 ≤ 𝑡 ) ) |
16 |
15
|
ralrimiv |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑀 ≤ 𝑡 ) |
18 |
|
uzssz |
⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ |
19 |
|
sstr |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ ) → 𝑆 ⊆ ℤ ) |
20 |
18 19
|
mpan2 |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → 𝑆 ⊆ ℤ ) |
21 |
|
eluzelz |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑚 ∈ ℤ ) |
22 |
|
breq1 |
⊢ ( 𝑗 = 𝑚 → ( 𝑗 ≤ 𝑡 ↔ 𝑚 ≤ 𝑡 ) ) |
23 |
22
|
ralbidv |
⊢ ( 𝑗 = 𝑚 → ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) ) |
24 |
23
|
rspcev |
⊢ ( ( 𝑚 ∈ 𝑆 ∧ ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
25 |
24
|
expcom |
⊢ ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ( 𝑚 ∈ 𝑆 → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
26 |
25
|
con3rr3 |
⊢ ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ¬ 𝑚 ∈ 𝑆 ) ) |
27 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) → 𝑡 ∈ ℤ ) |
28 |
|
zre |
⊢ ( 𝑚 ∈ ℤ → 𝑚 ∈ ℝ ) |
29 |
|
zre |
⊢ ( 𝑡 ∈ ℤ → 𝑡 ∈ ℝ ) |
30 |
|
letri3 |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑡 ∈ ℝ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ) ) |
31 |
28 29 30
|
syl2an |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ) ) |
32 |
|
zleltp1 |
⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ 𝑡 < ( 𝑚 + 1 ) ) ) |
33 |
|
peano2re |
⊢ ( 𝑚 ∈ ℝ → ( 𝑚 + 1 ) ∈ ℝ ) |
34 |
28 33
|
syl |
⊢ ( 𝑚 ∈ ℤ → ( 𝑚 + 1 ) ∈ ℝ ) |
35 |
|
ltnle |
⊢ ( ( 𝑡 ∈ ℝ ∧ ( 𝑚 + 1 ) ∈ ℝ ) → ( 𝑡 < ( 𝑚 + 1 ) ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
36 |
29 34 35
|
syl2an |
⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 < ( 𝑚 + 1 ) ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
37 |
32 36
|
bitrd |
⊢ ( ( 𝑡 ∈ ℤ ∧ 𝑚 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
38 |
37
|
ancoms |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑡 ≤ 𝑚 ↔ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
39 |
38
|
anbi2d |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( ( 𝑚 ≤ 𝑡 ∧ 𝑡 ≤ 𝑚 ) ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
40 |
31 39
|
bitrd |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑡 ∈ ℤ ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
41 |
27 40
|
sylan2 |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 = 𝑡 ↔ ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
42 |
|
eleq1a |
⊢ ( 𝑡 ∈ 𝑆 → ( 𝑚 = 𝑡 → 𝑚 ∈ 𝑆 ) ) |
43 |
42
|
ad2antll |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 = 𝑡 → 𝑚 ∈ 𝑆 ) ) |
44 |
41 43
|
sylbird |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( ( 𝑚 ≤ 𝑡 ∧ ¬ ( 𝑚 + 1 ) ≤ 𝑡 ) → 𝑚 ∈ 𝑆 ) ) |
45 |
44
|
expd |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 ≤ 𝑡 → ( ¬ ( 𝑚 + 1 ) ≤ 𝑡 → 𝑚 ∈ 𝑆 ) ) ) |
46 |
|
con1 |
⊢ ( ( ¬ ( 𝑚 + 1 ) ≤ 𝑡 → 𝑚 ∈ 𝑆 ) → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
47 |
45 46
|
syl6 |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( 𝑚 ≤ 𝑡 → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
48 |
47
|
com23 |
⊢ ( ( 𝑚 ∈ ℤ ∧ ( 𝑆 ⊆ ℤ ∧ 𝑡 ∈ 𝑆 ) ) → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
49 |
48
|
exp32 |
⊢ ( 𝑚 ∈ ℤ → ( 𝑆 ⊆ ℤ → ( 𝑡 ∈ 𝑆 → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) ) ) |
50 |
49
|
com34 |
⊢ ( 𝑚 ∈ ℤ → ( 𝑆 ⊆ ℤ → ( ¬ 𝑚 ∈ 𝑆 → ( 𝑡 ∈ 𝑆 → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) ) ) |
51 |
50
|
imp41 |
⊢ ( ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ 𝑚 ∈ 𝑆 ) ∧ 𝑡 ∈ 𝑆 ) → ( 𝑚 ≤ 𝑡 → ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
52 |
51
|
ralimdva |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ 𝑚 ∈ 𝑆 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
53 |
52
|
ex |
⊢ ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) → ( ¬ 𝑚 ∈ 𝑆 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
54 |
26 53
|
sylan9r |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
55 |
54
|
pm2.43d |
⊢ ( ( ( 𝑚 ∈ ℤ ∧ 𝑆 ⊆ ℤ ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) |
56 |
55
|
expl |
⊢ ( 𝑚 ∈ ℤ → ( ( 𝑆 ⊆ ℤ ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
57 |
21 56
|
syl |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ℤ ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
58 |
20 57
|
sylani |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
59 |
58
|
a2d |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑚 ≤ 𝑡 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 ( 𝑚 + 1 ) ≤ 𝑡 ) ) ) |
60 |
3 6 9 12 17 59
|
uzind4i |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
61 |
|
breq1 |
⊢ ( 𝑗 = 𝑛 → ( 𝑗 ≤ 𝑡 ↔ 𝑛 ≤ 𝑡 ) ) |
62 |
61
|
ralbidv |
⊢ ( 𝑗 = 𝑛 → ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) ) |
63 |
62
|
rspcev |
⊢ ( ( 𝑛 ∈ 𝑆 ∧ ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
64 |
63
|
expcom |
⊢ ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ( 𝑛 ∈ 𝑆 → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
65 |
64
|
con3rr3 |
⊢ ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
66 |
65
|
adantl |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ( ∀ 𝑡 ∈ 𝑆 𝑛 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
67 |
60 66
|
sylcom |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
68 |
|
ssel |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑛 ∈ 𝑆 → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) ) |
69 |
68
|
con3rr3 |
⊢ ( ¬ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
70 |
69
|
adantrd |
⊢ ( ¬ 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) → ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) ) |
71 |
67 70
|
pm2.61i |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) → ¬ 𝑛 ∈ 𝑆 ) |
72 |
71
|
ex |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ¬ 𝑛 ∈ 𝑆 ) ) |
73 |
72
|
alrimdv |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → ∀ 𝑛 ¬ 𝑛 ∈ 𝑆 ) ) |
74 |
|
eq0 |
⊢ ( 𝑆 = ∅ ↔ ∀ 𝑛 ¬ 𝑛 ∈ 𝑆 ) |
75 |
73 74
|
syl6ibr |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( ¬ ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 → 𝑆 = ∅ ) ) |
76 |
75
|
necon1ad |
⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → ( 𝑆 ≠ ∅ → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) ) |
77 |
76
|
imp |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ) |
78 |
|
breq2 |
⊢ ( 𝑡 = 𝑘 → ( 𝑗 ≤ 𝑡 ↔ 𝑗 ≤ 𝑘 ) ) |
79 |
78
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
80 |
79
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝑆 ∀ 𝑡 ∈ 𝑆 𝑗 ≤ 𝑡 ↔ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
81 |
77 80
|
sylib |
⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |