Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzwo2 | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃! 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℤ | |
| 2 | zssre | ⊢ ℤ ⊆ ℝ | |
| 3 | 1 2 | sstri | ⊢ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ |
| 4 | sstr | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ ( ℤ≥ ‘ 𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ ) | |
| 5 | 3 4 | mpan2 | ⊢ ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) → 𝑆 ⊆ ℝ ) |
| 6 | uzwo | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) | |
| 7 | lbreu | ⊢ ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) → ∃! 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) | |
| 8 | 5 6 7 | syl2an2r | ⊢ ( ( 𝑆 ⊆ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃! 𝑗 ∈ 𝑆 ∀ 𝑘 ∈ 𝑆 𝑗 ≤ 𝑘 ) |