Metamath Proof Explorer


Theorem uzwo2

Description: Well-ordering principle: any nonempty subset of an upper set of integers has a unique least element. (Contributed by NM, 8-Oct-2005)

Ref Expression
Assertion uzwo2 ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃! 𝑗𝑆𝑘𝑆 𝑗𝑘 )

Proof

Step Hyp Ref Expression
1 uzssz ( ℤ𝑀 ) ⊆ ℤ
2 zssre ℤ ⊆ ℝ
3 1 2 sstri ( ℤ𝑀 ) ⊆ ℝ
4 sstr ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ ( ℤ𝑀 ) ⊆ ℝ ) → 𝑆 ⊆ ℝ )
5 3 4 mpan2 ( 𝑆 ⊆ ( ℤ𝑀 ) → 𝑆 ⊆ ℝ )
6 uzwo ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 )
7 lbreu ( ( 𝑆 ⊆ ℝ ∧ ∃ 𝑗𝑆𝑘𝑆 𝑗𝑘 ) → ∃! 𝑗𝑆𝑘𝑆 𝑗𝑘 )
8 5 6 7 syl2an2r ( ( 𝑆 ⊆ ( ℤ𝑀 ) ∧ 𝑆 ≠ ∅ ) → ∃! 𝑗𝑆𝑘𝑆 𝑗𝑘 )