Metamath Proof Explorer


Theorem uzxr

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Assertion uzxr ( 𝐴 ∈ ( ℤ𝑀 ) → 𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 eqid ( ℤ𝑀 ) = ( ℤ𝑀 )
2 id ( 𝐴 ∈ ( ℤ𝑀 ) → 𝐴 ∈ ( ℤ𝑀 ) )
3 1 2 uzxrd ( 𝐴 ∈ ( ℤ𝑀 ) → 𝐴 ∈ ℝ* )