Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | uzxr | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐴 ∈ ℝ* ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | ⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) | |
2 | id | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
3 | 1 2 | uzxrd | ⊢ ( 𝐴 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝐴 ∈ ℝ* ) |