Metamath Proof Explorer


Theorem uzxrd

Description: An upper integer is an extended real. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzxrd.1 𝑍 = ( ℤ𝑀 )
uzxrd.2 ( 𝜑𝐴𝑍 )
Assertion uzxrd ( 𝜑𝐴 ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 uzxrd.1 𝑍 = ( ℤ𝑀 )
2 uzxrd.2 ( 𝜑𝐴𝑍 )
3 ressxr ℝ ⊆ ℝ*
4 1 2 uzred ( 𝜑𝐴 ∈ ℝ )
5 3 4 sselid ( 𝜑𝐴 ∈ ℝ* )