Metamath Proof Explorer
Description: An upper integer is an extended real. (Contributed by Glauco
Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
uzxrd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
|
|
uzxrd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |
|
Assertion |
uzxrd |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
uzxrd.1 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
2 |
|
uzxrd.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑍 ) |
3 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
4 |
1 2
|
uzred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
5 |
3 4
|
sselid |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |