Step |
Hyp |
Ref |
Expression |
1 |
|
vc0.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
2 |
|
vc0.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
3 |
|
vc0.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
vc0.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
1 3 4
|
vc0rid |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 𝑍 ) = 𝐴 ) |
6 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
7 |
6
|
oveq1i |
⊢ ( ( 1 + 0 ) 𝑆 𝐴 ) = ( 1 𝑆 𝐴 ) |
8 |
|
0cn |
⊢ 0 ∈ ℂ |
9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
10 |
1 2 3
|
vcdir |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
11 |
9 10
|
mp3anr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
12 |
8 11
|
mpanr1 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + 0 ) 𝑆 𝐴 ) = ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) |
13 |
1 2 3
|
vcidOLD |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 1 𝑆 𝐴 ) = 𝐴 ) |
14 |
7 12 13
|
3eqtr3a |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) = 𝐴 ) |
15 |
13
|
oveq1d |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) ) |
16 |
5 14 15
|
3eqtr2rd |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ) |
17 |
1 2 3
|
vccl |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 0 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) ∈ 𝑋 ) |
18 |
8 17
|
mp3an2 |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) ∈ 𝑋 ) |
19 |
1 3 4
|
vczcl |
⊢ ( 𝑊 ∈ CVecOLD → 𝑍 ∈ 𝑋 ) |
20 |
19
|
adantr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝑍 ∈ 𝑋 ) |
21 |
|
simpr |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
22 |
18 20 21
|
3jca |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 0 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) |
23 |
1 3
|
vclcan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( ( 0 𝑆 𝐴 ) ∈ 𝑋 ∧ 𝑍 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ↔ ( 0 𝑆 𝐴 ) = 𝑍 ) ) |
24 |
22 23
|
syldan |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) = ( 𝐴 𝐺 𝑍 ) ↔ ( 0 𝑆 𝐴 ) = 𝑍 ) ) |
25 |
16 24
|
mpbid |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ 𝐴 ∈ 𝑋 ) → ( 0 𝑆 𝐴 ) = 𝑍 ) |