| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vc0.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑊 ) | 
						
							| 2 |  | vc0.2 | ⊢ 𝑆  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 3 |  | vc0.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | vc0.4 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 5 | 1 3 4 | vc0rid | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 𝑍 )  =  𝐴 ) | 
						
							| 6 |  | 1p0e1 | ⊢ ( 1  +  0 )  =  1 | 
						
							| 7 | 6 | oveq1i | ⊢ ( ( 1  +  0 ) 𝑆 𝐴 )  =  ( 1 𝑆 𝐴 ) | 
						
							| 8 |  | 0cn | ⊢ 0  ∈  ℂ | 
						
							| 9 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 10 | 1 2 3 | vcdir | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 1  ∈  ℂ  ∧  0  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 1  +  0 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) | 
						
							| 11 | 9 10 | mp3anr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 0  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 1  +  0 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) | 
						
							| 12 | 8 11 | mpanr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1  +  0 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) ) ) | 
						
							| 13 | 1 2 3 | vcidOLD | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 1 𝑆 𝐴 )  =  𝐴 ) | 
						
							| 14 | 7 12 13 | 3eqtr3a | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) )  =  𝐴 ) | 
						
							| 15 | 13 | oveq1d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1 𝑆 𝐴 ) 𝐺 ( 0 𝑆 𝐴 ) )  =  ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) ) ) | 
						
							| 16 | 5 14 15 | 3eqtr2rd | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) )  =  ( 𝐴 𝐺 𝑍 ) ) | 
						
							| 17 | 1 2 3 | vccl | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  0  ∈  ℂ  ∧  𝐴  ∈  𝑋 )  →  ( 0 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 18 | 8 17 | mp3an2 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 0 𝑆 𝐴 )  ∈  𝑋 ) | 
						
							| 19 | 1 3 4 | vczcl | ⊢ ( 𝑊  ∈  CVecOLD  →  𝑍  ∈  𝑋 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  𝑍  ∈  𝑋 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 22 | 18 20 21 | 3jca | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 0 𝑆 𝐴 )  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) ) | 
						
							| 23 | 1 3 | vclcan | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( ( 0 𝑆 𝐴 )  ∈  𝑋  ∧  𝑍  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) )  =  ( 𝐴 𝐺 𝑍 )  ↔  ( 0 𝑆 𝐴 )  =  𝑍 ) ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝐴 𝐺 ( 0 𝑆 𝐴 ) )  =  ( 𝐴 𝐺 𝑍 )  ↔  ( 0 𝑆 𝐴 )  =  𝑍 ) ) | 
						
							| 25 | 16 24 | mpbid | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 0 𝑆 𝐴 )  =  𝑍 ) |