| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vciOLD.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑊 ) | 
						
							| 2 |  | vciOLD.2 | ⊢ 𝑆  =  ( 2nd  ‘ 𝑊 ) | 
						
							| 3 |  | vciOLD.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 | 1 2 3 | vcidOLD | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 1 𝑆 𝐴 )  =  𝐴 ) | 
						
							| 5 | 4 4 | oveq12d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) )  =  ( 𝐴 𝐺 𝐴 ) ) | 
						
							| 6 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 7 | 6 | oveq1i | ⊢ ( 2 𝑆 𝐴 )  =  ( ( 1  +  1 ) 𝑆 𝐴 ) | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 | 1 2 3 | vcdir | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 1  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 1  +  1 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 10 | 8 9 | mp3anr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  ( 1  ∈  ℂ  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 1  +  1 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 11 | 8 10 | mpanr1 | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1  +  1 ) 𝑆 𝐴 )  =  ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) ) ) | 
						
							| 12 | 7 11 | eqtr2id | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( ( 1 𝑆 𝐴 ) 𝐺 ( 1 𝑆 𝐴 ) )  =  ( 2 𝑆 𝐴 ) ) | 
						
							| 13 | 5 12 | eqtr3d | ⊢ ( ( 𝑊  ∈  CVecOLD  ∧  𝐴  ∈  𝑋 )  →  ( 𝐴 𝐺 𝐴 )  =  ( 2 𝑆 𝐴 ) ) |