Step |
Hyp |
Ref |
Expression |
1 |
|
vciOLD.1 |
⊢ 𝐺 = ( 1st ‘ 𝑊 ) |
2 |
|
vciOLD.2 |
⊢ 𝑆 = ( 2nd ‘ 𝑊 ) |
3 |
|
vciOLD.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
1 2 3
|
vciOLD |
⊢ ( 𝑊 ∈ CVecOLD → ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) ) |
5 |
|
simpr |
⊢ ( ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
6 |
5
|
ralimi |
⊢ ( ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
8 |
7
|
ralimi |
⊢ ( ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
10 |
9
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ AbelOp ∧ 𝑆 : ( ℂ × 𝑋 ) ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑋 ( ( 1 𝑆 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ 𝑋 ( 𝑦 𝑆 ( 𝑥 𝐺 𝑧 ) ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑦 𝑆 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 𝑆 𝑥 ) 𝐺 ( 𝑧 𝑆 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
12 |
4 11
|
syl |
⊢ ( 𝑊 ∈ CVecOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) ) |
14 |
|
oveq2 |
⊢ ( 𝑥 = 𝐶 → ( 𝑧 𝑆 𝑥 ) = ( 𝑧 𝑆 𝐶 ) ) |
15 |
14
|
oveq2d |
⊢ ( 𝑥 = 𝐶 → ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) |
16 |
13 15
|
eqeq12d |
⊢ ( 𝑥 = 𝐶 → ( ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) ↔ ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) ) |
17 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 · 𝑧 ) = ( 𝐴 · 𝑧 ) ) |
18 |
17
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) ) |
19 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ( ( 𝑦 · 𝑧 ) 𝑆 𝐶 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ) ) |
21 |
|
oveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 · 𝑧 ) = ( 𝐴 · 𝐵 ) ) |
22 |
21
|
oveq1d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) ) |
23 |
|
oveq1 |
⊢ ( 𝑧 = 𝐵 → ( 𝑧 𝑆 𝐶 ) = ( 𝐵 𝑆 𝐶 ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝑧 = 𝐵 → ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |
25 |
22 24
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( ( 𝐴 · 𝑧 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝑧 𝑆 𝐶 ) ) ↔ ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
26 |
16 20 25
|
rspc3v |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ ℂ ( ( 𝑦 · 𝑧 ) 𝑆 𝑥 ) = ( 𝑦 𝑆 ( 𝑧 𝑆 𝑥 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
27 |
12 26
|
syl5 |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
28 |
27
|
3coml |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) → ( 𝑊 ∈ CVecOLD → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) ) |
29 |
28
|
impcom |
⊢ ( ( 𝑊 ∈ CVecOLD ∧ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 · 𝐵 ) 𝑆 𝐶 ) = ( 𝐴 𝑆 ( 𝐵 𝑆 𝐶 ) ) ) |